Как правильно выбрать контроллер заряда для солнечных батарей


Как подобрать контроллер заряда для солнечных батарей

Статья посвящена выбору характеристик контроллера заряда аккумуляторов для солнечной электростанции

Как подобрать контроллер заряда

Вопрос – как выбрать контроллер заряда для солнечной электростанции является одним из главных при расчете солнечной системы. При всей кажущейся сложности этого вопроса, его можно существенно упростить. Это мы и попытаемся сделать в этой статье.

Итак:

Выбор контроллера заряда является четвертым этапом при расчете солнечной системы. После выбора требуемого инвертора (ссылка), расчета требуемой емкости аккумуляторов и определения требуемой суммарной мощности солнечных панелей можно приступить к выбору контроллера заряда.

 

О том какие контроллеры бывают и какой тип контроллера выбрать вы можете прочитать тут – http://oporasolar.ru/a171898-chto-takoe-kontroller.html

 

Поэтому останавливаться на этом мы не будем, а приведем способы расчета для двух типов контроллеров PWM (ШИМ) и MPPT.

 

Подбор PWM (ШИМ) контроллера заряда АКБ

При подборе контроллера данного типа мы будем прежде всего опираться на 2 основных характеристики это допустимая сила тока (5А, 10А,  20А, 50А) и рабочее напряжение (12В, 24В, 48В).

 

Немного подробнее об этих характеристиках:

Допустимая сила тока определяет максимальный ток от солнечных панелей который будет выдерживать контроллер.

Рабочее напряжение – это режимы в которых контроллер может функционировать. В зависимости от схемы соединения солнечных панелей и аккумуляторов – мы можем выбрать режим работы – рабочее напряжение.

 

О том какие варианты соединения Аккумуляторов и Солнечных панелей  могут быть, а также как будут определяться рабочие токи и напряжения – вы можете прочитать тут – http://oporasolar.ru/a171380-varianty-podklyucheniya-akkmulyatorov.html

И тут – http://oporasolar.ru/a171460-kak-podklyuchit-solnechnye.html

 

Номинальная сила тока одной панели определяется как Номинальная Мощность делить на Номинальное Напряжение

Например:

 для 100 ватной панели на 12 вольт мы получим 100/12=8.33А  ― для одной такой панели контроллера заряда на 10А и 12В будет достаточно, но при этом надо убедиться, что банк аккумуляторов (если их несколько) собран на 12В.

Включая 2 таких панели последовательно мы получаем номинальное напряжение равное 12В*2=24В и в данном случае потребуется уже контроллер заряда который может работать в режиме 24В, при этом допустимая номинальная сила тока по прежнему остается 10А, поскольку при последовательном включении солнечных панелей,  номинальный ток будет равен току одной панели – 8.33А.

 

Если мы включим 2 солнечных панели параллельно, то напряжение останется равным 12 В но при этом ток будет суммироваться. В нашем случае 8.33А*2=16.66А а значит контроллера заряда 20А будет достаточно.

При выборе режима включения PWM контроллера очень важно, чтобы вся система была собрана на одно номинальное напряжение – т.е. если мы включаем аккумуляторы на 24В, то и панели и контроллер и инвертор должны быть включены на 24В.

 

Для того чтобы определить какое максимальное количество панелей можно включить в PWM контроллер при различных режимах включения нужно умножить ток на напряжение режима включения.

Для примера определим какие панели можно включить в контроллер 30А 12/24/48В:

Итак – при включении контроллера в режиме 12 В мы имеем максимальную мощность панелей равную 12В*30А=360Вт – это может быть одна панель на 360Вт с номинальным напряжением 12В, 2 панели по 180Вт с номинальным напряжением 12В включенные параллельно, 4 панели по 90Вт с номинальным напряжением 12В включенные параллельно и так далее

 

При включении контроллера в режиме 24В  ― имеем 24В*30А=720Вт – можно включить 6 панелей по 120Вт с номинальным напряжением 12В при этом соединив по 2 панели последовательно и затем 3 таких цепи параллельно, или другие различные варианты как в предыдущем режиме

 

Мы также можем включить этот контроллер в режиме 48В и тогда получим максимальную мощность панелей 48В*30А=1440Вт.

 

Другим важным ограничением при выборе PWM контроллера заряда считается Емкость банка аккумуляторов. Считается, что ток заряда аккумуляторов должен быть не менее 10% от значения емкости банка аккумуляторов, т.е. для аккумулятора на 100Ач нужен ток контроллера не менее 10А. При последовательном включении аккумуляторов номинальное напряжение остается неизменным, а вот емкость суммируется соответственно для двух 100Ач АКБ включенных последовательно, ток нужен уже 20А. Поэтому старайтесь выбирать режим работы контроллера так, чтобы ток заряда банка аккумуляторов не был больше номинального тока контроллера.

 

Подбор MPPT контроллера заряда АКБ

В случае выбора такого контроллера ситуация обстоит немного проще. Такие контроллеры преобразовывают любое напряжение панелей на входе в контроллер в требуемое номинальное для зарядки аккумуляторов. 

 

У таких контроллеров важна еще одна характеристика – максимальное напряжение холостого хода солнечных панелей и в данном случае она определяет количество панелей и схему включения.

 

Напряжение холостого хода любой панели указано в инструкции  к солнечной панели или на самой панели с обратной стороны называется  Uoc (U open circuit). Например для панели 150Вт (Моно) 12В  напряжение холостого хода составляет порядка 23В. 

 

Что касается подбора контроллера по току – ситуация аналогичная PWM контроллерам.

 

Например в контроллер MPPT на 60А и 150В Напряжение холостого хода можно включить последовательно 6 моно панелей по 150 Вт с напряжением холостого хода 23В (23В* 6=138В меньше 150В). При этом включить параллельно эти же 6 панелей мы не сможем, поскольку для каждой панели номинальный ток будет равен 150Вт/12В=12,5А. А это значит что включив параллельно 4 таких панели мы получим ток уже 50А. Поэтому в данном случае очень важно определить схему включения панелей так, чтобы получить максимальную суммарную мощность.

При использовании данных панелей мы можем подключить до 24 таких панелей – по 6 панелей последовательно и далее 4 цепочки параллельно.

 

На этом все сложности выбора контроллеров заряда заканчиваются.

Есть более научные способы расчета требуемых характеристик контроллеров, но в целом результаты таких расчетов не будут существенно отличаться от предложенного нами способа. Если Вам интересны такие способы расчета ― следите за появлением новых статей ― мы будем стараться подробно разбирать все нюансы.

 

Если у вас возникли сложности при расчетах – звоните +7-903-008-34-37 и мы с радостью поможем вам разобраться. Кроме того мы сделаем для вас расчет системы любой сложности абсолютно бесплатно!

oporasolar.ru

Как грамотно выбрать контроллер для солнечных батарей

Дата публикации: 2 января 2019

Автономные гелиосистемы, которые не требуют подключения к общей сети, состоят из множества элементов: солнечных батарей, инвертора, аккумулятора, реле и т.д. Ключевую роль в системе занимает контроллер. Он регулирует работу гелиосистемы и управляет аккумулятором. Главная задача контроллера — не допустить разрядки аккумулятора, а также не позволить ему перегружаться. Это позволяет продлить срок службы аккумулятора и предупредить его поломку в случае перегрузок.

Как подобрать контроллер заряда для солнечных батарей

В первую очередь стоит обратить внимание на такие параметры, как:

  • Входное напряжение. Взгляните на информацию в техпаспорте: там указывается максимальное напряжение и напряжение «холостого хода» солнечной батареи. Первый параметр должен быть на 20% выше «холостого хода». Даже если производители указали в документациях завышенные показатели, с этим нехитрым расчетом подобрать подходящий контроллер — реально и без специалиста. Учитывайте и то, что при высокой активности Солнца (в летний период), напряжение в солнечных батареях будет на порядок выше, чем указано в техпаспорте.
  • Наличие защиты. Многие модели оснащаются дополнительной защитой от различных неприятных ситуаций: неправильное подключение полярности, короткие замыкания, удар молнии, перегрев, разрядка в ночное время и т.п. Выбирайте контроллер с учетом индивидуальных потребностей: например, если в вашем регионе грозы — частое явление, тогда защита от удара молнии пригодится.
  • Номинальный ток. Для моделей каждого типа устройства он свой. Для PWM-контроллеров номинальный ток на 10% выше тока короткого замыкания солнечного модуля. Для MPPT моделей номинальный ток вычисляется, исходя из мощности, которая должна быть равна или немного превышать произведение напряжения солнечной батареи на ток регулятора.

В период высокой инсоляции без контроллера не обойтись: случаются перегрузки, и вся гелиосистема способна выйти из строя. Чтобы этого не произошло, необходимо дополнительно рассчитать показатели номинального тока «про запас». Всегда лучше приобрести более дорогой контроллер с высокими параметрами мощности. Для вычисления показателей, необходимых для расчета «запаса», к полученным значениям по номинальному току прибавьте еще 20% мощности — этого достаточно, чтобы спасти гелиосистему от перегрузок.

Обзор контроллеров солнечной батареи: разновидности

По своему устройство различают четыре типа контроллеров (не считая самодельных):

  • On\Off — отключает заряд по достижению верхнего предела напряжения;
  • PWM — для понижения заряжающего тока при максимальных нагрузках;
  • МРРТ — сложная система, снимающая высокое напряжение с батарей с последующей оптимизацией нагрузки;
  • гибридные — созданы для комбинированных систем (солнечные модули + ветряки) для сброса избыточной энергии.

Чем сложнее модель, тем выше ее стоимость. Поэтому устройства типа «On\Off» всегда будут стоить дешевле, чем МРРТ. Необязательно покупать последнюю новинку техники, если вам необходим простой контроллер для солнечной батареи на даче. В этих случаях модели «On\Off» будет достаточно. Если вам необходимо позаботиться о гелиосистеме, работающей на постоянной основе и служащей для обеспечения электроэнергией жилого дома, тогда стоит задуматься о приобретении PWM или МРРТ моделей. Гибридные модели актуальны только для владельцев комбинированных систем. Они строятся на базе МРРТ или PWM с той разницей, что у них используются вольтамперные системы исчисления.

Советы по выбору контроллера для солнечной батареи

Чтобы не совершить ошибку при покупке, учитывайте такие аспекты:

  • Мощность солнечных батарей не должна превышать мощности контроллера — это приводит к поломке. Учитывайте, что не каждое устройство располагает функцией ограничения мощности. На деле такой опцией оснащены только модели от продвинутых производителей. К примеру, линейка «Tracer A» от компании EpSolar. Подобный ограничитель указывается в технических характеристиках.
  • В расчетах учитывайте, что из-за низких температур общий показатель КПД гелиосистемы увеличивается, в то время как показатель номинальной мощности (в техпаспорте) указывается для средней температуры 25°С. Для примера: у кремниевых батарей температурный коэффициент колеблется от 0,3% до 0,5% на градус по Цельсию. Значит, для -25°С мощность увеличится на 20%. Если не брать это во внимание, то высок риск купить неподходящий контроллер.
  • Никогда не устанавливайте контроллер с меньшим номиналом — он сломается, даже если вы собираетесь использовать его для неполной нагрузки. Ситуации случаются разные, и от капризов погоды не застрахован никто.
  • Сами производители отмечают, что лучший контроллер для солнечных батарей — тот, который оснащен температурной компенсацией зарядных напряжений. От температуры аккумулятора зависит предельное напряжение зарядки. Иными словами, с наличием встроенного или подключенного температурного датчика вы сможете следить за перегревом устройства. Это позволяет избежать поломок и повысить точность работы аккумулятора.
  • Для измерения выработки энергии от Солнца учитывайте среднемесячные значения за пять-семь лет — не только последние показатели. Это позволяет увидеть широту колебаний солнечного массива и выбрать не только подходящие модули, но и соответствующий им контроллер.

altenergiya.ru

Как правильно подобрать контроллер заряда аккумуляторов от солнечных панелей?

Контроллер заряда аккумуляторной батареи выполняет несколько важнейших функций, которые сводятся к оптимизации схемы питания АКБ, сохранению ресурсов солнечной батареи и предотвращению фатальных поломок. Контроллер регулирует уровень заряда на системах как автономного, так и резервного электропитания.

Покупка контроллера заряда АКБ – на что обратить внимание

Выбирая контроллер, следует обратить внимание на ряд технических параметров, которые позволят получить оптимальную по мощности систему электроснабжения. Прежде всего, следует знать о технологических различиях контроллеров, которые реализованы в основных видах этих устройств, существующих на сегодняшний день.

Схема заряда батареи АКБ

В первую очередь вам нужно выяснить схему заряда вашей аккумуляторной батареи. Существуют две основные технологии: MPPT и PWM. Первая расшифровывается как Maximum Power Point Tracking и переводится с английского как «слежение за точкой максимальной мощности». Устройства, поддерживающие эту технологию, в среднем на 30% эффективнее стандартных PWM-аккумуляторов, так как последние не используют всю мощность солнечной панели, в результате чего часть ее просто теряется. Принцип работы контроллера для АКБ со схемой заряда MPPT основан на обнаружении точек с наивысшей мощностью и распределением всего объема энергии в среде доступа. Последние модели подобных контроллеров обладают сверхвысокой скоростью обнаружения точек максимальной мощности, которая исчисляется секундами, и на 10% превосходят стандартные MTTP-устройства по эффективности в эксплуатации.

Регулировка параметров и выбор схемы заряда

Немаловажным фактором, определяющим срок службы АКБб, является правильно подобранное напряжение в сети. Напряжение на одних и тех же участках заряда различается в зависимости от типа батареи (кислотные, литий-ионные, АГМ, гелиевые, наливные). Контроллер заряда АКБ в свою очередь имеет функционал параметров, позволяющий производить настройку под тот или иной тип аккумуляторного устройства.

Датчик температуры

Показателем качественного контроллера является, среди прочего, наличие встроенного или внешнего датчика температуры. Функция датчика состоит в определении температуры устройства и компенсации температуры напряжений заряда. Это регулирование напряжения заряда в соответствии с температурой аккумуляторной батареи предотвращает преждевременный износ и продлевает срок службы АКБ.

Выбор контроллера с учетом напряжения аккумуляторной батареи

Технические характеристики солнечных панелей и аккумуляторов имеют определяющее значение при выборе подходящей модели контроллера заряда. Изучая ассортимент актуальных на сегодняшний день моделей контролеров, несложно заметить, что они способны работать со всеми возможными уровнями напряжения солнечных панелей и батарей (12, 24, 36 и 48 вольт). Для долговечной работы АКБ должно соблюдаться условие: контроллер соответствует максимальному напряжению устройства энергосбережения.

Ориентация на входное напряжение солнечной батареи

Для того чтобы обезопасить ваше регулирующее устройство от поломки в связи с не гарантийным случаем, необходимо обращать внимание не только на характеристики входного напряжения солнечной панели, но и на так называемый «холостой ход» при невысоких температурах воздуха в окружающей среде. Если этот момент не учитывать, поломка входных каскад регуляторов неминуема. Чтобы верно рассчитать «холостой ход», используйте коэффициент 25%, который будет учитывать увеличение напряжения сети при низком температурном режиме. Приведем наглядный пример. При использовании для электропитания солнечной панели с «холостым ходом» 37,4 вольт в комплекте с контроллером заряда с наивысшей мощностью 150 вольт, необходимо создавать одну цепь не более чем из трех панелей. Считаем по формуле: «холостой ход» * 25% * количество панелей. Получаем 37,4 вольт *25%*3 шт. = 140,25. Превышение максимальной мощности приведет к выходу из строя оборудования.

Выбор по силе выходного тока

Помимо входного напряжения, важным фактором при выборе контроллера является соответствие по силе выходного тока. Расчет производят по формуле: складываем мощности всех батарей и делим получившееся число на напряжение всего объема энергонакопителей в стадии разряда.

Рассмотрим конкретный пример: система содержит солнечную батарею (2250 W) из 9 плит, каждая обладает мощностью 250 W, и вы применяете аккумулятор с характеристикой 48 вольт. По указанной выше формуле вам нужно суммарную мощность разделить на минимальное напряжение аккумулятора в разряженном состоянии, другими словами – минимальное выходное напряжение, что в данном случае соответствует значению 44 В, и далее умножить на коэффициент 25%. Получим: 2250/44*25%= 64 А. Следовательно, для данной системы предпочтительными являются контроллеры с силой выходного тока 64 А и более.

При использовании всех вышеперечисленных правил подбора контроллер минимизирует нагрузки на систему и позволяет получить самый высокий заряд аккумуляторов.

15 октября 2014


www.vega-volt.ru

Как выбрать контроллер заряда для солнечной батареи? © Солнечные.RU

Если Вы знакомы с особенностями солнечных батарей, а именно с тем, что они представляют собой источники тока, что как раз и необходимо для зарядки аккумуляторов, то может возникнуть следующий вопрос.

Зачем вообще нужен контроллер заряда для солнечной батареи? И действительно, достаточно просто соединить солнечную батарею с аккумулятором, и при наличии хоть какого-то света, а еще лучше - Солнца, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера.

Так для чего же тогда покупать контроллер заряда, какие функции он выполняет и в чем отличие разных типов контроллеров (MPPT, PWM, ON/OFF)? Попробуем разобраться с этим.

Итак, что будет, если не применять его совсем? При прямом подключении солнечной батареи к аккумулятору пойдет зарядный ток и напряжение на клеммах аккумулятора начнет постепенно расти. Пока оно не достигнет предельного напряжения зарядки (которое зависит от типа аккумулятора и его температуры), прямое подключение будет равнозначно присутствию контроллера моделей PWM или ON/OFF, поскольку в этом режиме эти модели просто соединяют вход и выход.

При достижении предельного напряжения (около 14 Вольт), ON/OFF контроллер, который является самым дешевым из всех типов, просто отключит солнечную батарею от аккумулятора и заряд прекратится, хотя в реальности аккумулятор заряжен еще не полностью и для полной зарядки требует поддержания на нем предельного напряжения в течение еще нескольких часов. Эту задачу решает PWM контроллер, который при помощи широтно-импульсного преобразования (ШИМ или, по английски — PWM) понижает напряжение солнечной батареи до нужного значения и поддерживает его.

Если же Вы не используете никакого контроллера, то Вам нужно постоянно следить при помощи вольтметра за зарядным напряжением и в нужный момент отключить солнечную батарею. И если Вы забудете ее отключить, то это приведет к перезаряду, выкипанию электролита и сокращению срока службы аккумуляторов. Однако, если Вы и отключите ее вовремя или же используете простой ON/OFF контроллер, аккумуляторы останутся заряженными не полностью (примерно на 90%), а регулярный недозаряд в конечном итоге приведет к значительному сокращению их срока службы.

Существуют еще два важных фактора, которые должны быть учтены при заряде аккумуляторов. Качественные контроллеры заряда обязательно должны учитывать температуру аккумулятора и иметь температурную компенсацию зарядных напряжений, а также иметь выбор типа аккумуляторной батареи (AGM, GEL, жидко-кислотный), поскольку разные типы имеют разные зарядные кривые (разные напряжения в одних и тех же режимах). Отметим также, что для температурной компенсации может использоваться как встроенный температурный датчик, так и выносной. При использовании выносного температурного датчика, точность работы контроллера повышается.

Подведем промежуточный итог.

Мы рассмотрели вариант отказа от контроллера заряда, а также использование двух типов контроллеров — PWM и ON/OFF и пришли к выводу, что наилучшим из перечисленных вариантов является PWM тип. При этом крайне важно наличие у него температурной компенсации и возможности выбора типа аккумуляторных батарей.

Окончание

www.solnechnye.ru

Как выбрать контроллер заряда для солнечных батарей

В 21 веке каждый образованный человек знает о существовании альтернативной добычи полезных ресурсов, солнечных батареях, возможности трансформирования энергии солнца в электрический ток, и выгоде использования. При этом мало кто задумывается, что простого подключения батареи к источнику питания недостаточно для эффективной работы.

Прямое подключение источника альтернативной энергии без использования контроллера заряда обеспечивает питание до фактического значения предельного напряжения, то есть ещё за несколько часов до его полной зарядки. Что в свою очередь непосредственно оказывает негативное влияние на срок эксплуатации и качество работы устройств. Постоянный недозаряд батареи также существенно сокращает срок эксплуатации оборудования.

Использование фотоэлектрических систем без контроллера заряда акб (аккумуляторов) от солнечных батарей является малоэффективным. Такой аппарат может выступать, как в качестве отдельного агрегата, так и устанавливаться в инверторы или блоки бесперебойного питания.

Разновидности контроллера заряда

Для того, чтобы выбор контроллера заряда солнечной батареи был сделан правильно, необходимо изучить все разновидности аппаратов и выбрать наиболее подходящий. В настоящее время большой популярностью пользуются 2 вида, а именно: ШИМ и МРРТ.

Контролер заряда ШИМ

Принцип работы ШИМ контроллера заряда солнечной батареи основан на достижении постоянного напряжения на аккумуляторе. Главными достоинствами аппаратов являются: предотвращение возможности перегрева, повышение способности принятия, автономное регулирование расхода заряда с учётом «возраста» оборудования.

(Широтно-импульсная модуляция -англ. pulse-width modulation (PWM)

МРРТ регулятор заряда

Работа MRRT контролера заряда для солнечных батарей основана на поиске точки максимальной мощности. Простыми словами, это поиск значения напряжения и силы тока, при которых параметры яркости света, нагрева и угла падения лучей будут максимально эффективными. Простая реализация системы накопления ресурсов не в состоянии самостоятельно справиться с поставленной задачей. Поэтому для реализации таковой устанавливаются аппараты контроля типа МРРТ.

Отслеживание точки максимальной мощности — MPPT Maximum power point tracking for low power photovoltaic solar panels

Тонкости выбора контроллера заряда

Среди широкого ассортимента моделей следует остановить свой выбор на том, который наиболее подходит по следующим параметрам:

  • Входному напряжению. Показатели максимально допустимого напряжения должны быть больше значений холостого хода с учётом запаса в 20%. Он необходим для обеспечения работоспособности системы в аномальные дни, которые отличаются от условий паспортных измерений.
  • Суммарной мощности. Показатели суммарной мощности батарей не должны превышать значение произведения выходного тока на напряжение системы с разряженными аккумуляторами, учитывая запас в размере до 20%.
  • Защитой. Зачастую различные модели имеют собственный набор защит, который состоит из показаний от перезарядки, перегрева, наличия коротких замыканий и так далее. Они обеспечивают надёжную, качественную и стабильную работу системы.
  • Интенсивностью солнечной радиации. В самый жаркий день интенсивность радиации может достигать до 1250 Вт/м2, а замер производиться зачастую при показателях на 250 Вт/м2 меньше. Это предполагает на 20-15% увеличение по мощности. Конечно такая ситуация редкость, но её необходимо учитывать.

Какой контроллер заряда купить?

Если рассматривать каждый из видов по отдельности, следует обратить внимания на некоторые нюансы выбора контроллера заряда для солнечных батарей, а именно:

  • Для ШИМ контролеров необходимо внимательно изучить показания тока. Он должен быть больше или совпадать с показаниями тока короткого замыкания, включая запас в 10%.
  • Для регуляторов заряда МРРТ модель выбирается по номинальному показанию мощности, которая рассчитывается исходя из произведения показаний выходного тока и напряжения системы. Результат должен быть равен либо больше сумме мощностей количества используемых батарей в системе.

Учитывая вышеизложенные тонкости выбора прибора, каждый потребитель имеет возможность самостоятельно подобрать наиболее подходящую модель для имеющейся экологически чистой системы добычи электрической энергии.

Рекомендуем прочесть:

www.solar-battery.com.ua

Солнечный контроллер. Теория

Виды солнечных контроллеров заряда

Солнечный контроллер заряда является важным элементом солнечной электростанции, без которого невозможна корректная работа остального оборудования, в частности правильный заряда аккумуляторных батарей. Поэтому при подборе контроллера для Вашей системы убедитесь, что технические данные изделия соответствуют потребностям выбранных солнечных элементов. В первую очередь следует обратить внимание на вид контроллеров и их существенные различия.

Выделяют два самых популярных вида контроллеров:

- MPPT контроллер заряда. Это серьезное изделие, которое значительно влияет на количество аккумулируемой энергии, увеличивая ее на 25-30% по сравнению с другими контроллерами заряда. Принцип работы этого изделия основан на алгоритме слежения за точкой максимальной мощности солнечного модуля. Эффективность таких систем выше. Несмотря на большую первоначальную стоимость этого изделия, срок окупаемости солнечной электростанции с ним значительно короче.

- PWM (ШИМ) контроллер заряда мы рекомендуем использовать исключительно в регионах с очень высокой солнечной активностью. Это "экономичная" версия с очень простым алгоритмом. В регионах с низкой солнечной активностью их применение не целесообразно и не экономично.

Если Вы сделали выбор в пользу MPPT контроллера, то следующий шаг - правильно подобрать модель относительно количества и технических параметров уже выбранных солнечных модулей. 

Что нужно знать, покупая контроллер заряда аккумулятора?

Выбирая контроллер заряда аккумулятора необходимо руководствоваться следующими правилами:

1. Входное напряжение. Производителями регламентируется напряжение подключаемых солнечных батарей. Поэтому максимальное допустимое входное напряжение, указанное в технических данных контроллера, должно соответствовать напряжению холостого хода солнечной батареи (СБ) или сумме напряжений холостого хода группы солнечных модулей, соединенных последовательно, плюс запас не менее 20%. Запас обусловлен рядом причин:

- Указанное производителем входное напряжение может быть завышено;

- При аномально высокой солнечной активности напряжение холостого хода солнечной батареи может быть выше указанного производителем.

2. Суммарная мощность солнечных батарей должна быть не более произведения выходного тока контроллера на напряжение системы. При этом напряжение системы нужно брать для разряженных аккумуляторов. Также необходимо взять запас не менее 20% на случай аномально высокой солнечной активности.

Сделав расчет, опираясь на эти правила, Вы можете смело приступить к выбору изделия, соответствующего полученным характеристикам. Если Вы затрудняетесь в выборе или не уверены, что Ваш расчет верен - обратитесь к инженерам нашей компании за помощью. Обладая обширным опытом установки солнечных контроллеров, они помогут Вам с выбором необходимого изделия и дадут рекомендации по монтажу.

www.helios-house.ru

Контроллер солнечных батарей – обязательный элемент для продолжительной работы гелиосистемы

Наиболее востребованные гелиотермальные системы на сегодняшний день – это автономные, без подключения к электрической сети. Основным компонентом такой системы является солнечная батарея. Другими важными элементами выступают инвертор, реле, аккумулятор (АКБ), контроллер заряда и связывающие провода. Контроллер для солнечных батарей выступает значимым элементом в цепи.

Основные функции

Контроллер заряда солнечных батарей отвечает за:

  • Поддержку верной полярности.
  • Эффективное распределение электроэнергии, вырабатываемой солнечными панелями.
  • Контроль заряда аккумуляторов. Благодаря такому устройству поддерживается стабильное напряжение на выходе при полном заряде аккумулятора. Когда емкость батареи максимальная, то контроллер лишь компенсирует саморазряд, а при полном разряде он автоматически отключает нагрузку. Все эти действия продлевают «жизнь» дорогостоящей АКБ.
  • Защиту от коротких замыканий и обрывов.

И в целом ведет контроль над процессом преобразования энергии в системе, в случае необходимости подключает и отключает потребителей.

Всем этим рядом функций, или только частично, обладают разные типы контроллеров.

Виды устройств

Существуют самодельные контроллеры заряда, но чаще используется заводская продукция следующих типов:

  1. On/Off
  2. ШИМ (PWM)
  3. MPPT

Первый вариант контроллера заряда – самый простой в исполнении и самый доступный в цене. Он подключает на зарядку АКБ и по достижении напряжения 14,4 В отключает заряд. Такой принцип работы позволяет заряжать аккумулятор только на 70%, поэтому изнашиваются пластины в батарее, и уменьшается срок ее службы.

Контроллер  Off» «On –на сегодня пользуется малым спросом.

С проблемой неполной зарядки легко справляется электронное устройство, основанное на использовании широтно-импульсной модуляции (ШИМ) тока на входе.

Такие контроллеры заряда не только повышают общую эффективность гелиосистемы, но и регулируют напряжение в зависимости от температуры окружающего воздуха, тем самым предотвращая перегрев самой батареи.

Контроллер для солнечной батареи ШИМ модификации наделен возможностью выяснять возраст аккумуляторов, а также понижать ток заряда до отметки, не допускающей газовыделение.

Такие приборы преимущественно используются в местах с высокой солнечной активностью в автономной системе электроснабжения до 2 кВт.

Третий вариант контроллера солнечной панели – это МРРТ. Устройства не только отвечают всем требованиям современных гелиосистем, но и способны увеличить количество вырабатываемой солнечной панелью энергии до 30%. Их работа основывается на поиске в устройстве фотопанели точки с максимальной мощностью. Благодаря этому, повышается производительность всей солнечной электростанции и сокращается срок ее окупаемости.

Единственным недостатком контроллера заряда разряда МРРТ является его высокая цена, по сравнению с другими видами.

Как правильно выбрать данное устройство?

Контроллер солнечных батарей – непременный элемент схемы вашего автономного электроснабжения, поэтому перед его покупкой обязательно обратите внимание на следующие параметры:

  • Напряжение на входе. Этот параметр, обозначенный в техническом паспорте, должен быть на 20% выше относительно напряжения солнечной панели без нагрузки (не менее 24 В). Это обязательное требование, ведь часто производители в спецификациях указывают завышенные значения напряжения. Не забывайте также, что в пик световой активности напряжение на фотоэлементах часто бывает выше паспортных данных.
  •  Номинальный ток. Для приборов типа ШИМ номинальное значение тока должно быть на 10% больше тока КЗ батареи.
  • Мощность. Выбирать контроллер типа MPPT необходимо по мощности (желательно, чтобы его мощность была выше произведения напряжения гелиосистемы и выходного тока регулятора). Напряжение системы считается при аккумуляторах без заряда солнечной батареи. К полученному значению мощности добавьте 20% запаса, учитывая вероятность высокой активности солнца. Это повысит безопасность всей системы и убережет от убытков.

ekoenergia.ru

Возобновляемый источник энергии - солнечная энергия от Гелиос Хаус

Опубликовано 15 января 2016

Не редко, при подборе контроллера для солнечной фотоэлектрической системы пользователи совершают ошибки, носящие порой принципиальный характер. Ошибки эти совершают, в том числе и люди, имеющие соответствующее образование, либо теоретически подкованные, не обратившие внимание на некоторые важные нюансы.

 

Самые часты ошибки при расчёте контроллера заряда аккумулятора

Казалось бы, очень просто подобрать контроллер заряда аккумулятора – просто делим мощность солнечных батарей на напряжение системы и получаем значение номинального тока. Тем не менее, довольно часто клиенты берут за основу значение номинального тока солнечной батареи. Все это верно для ШИМ контроллера, у которого напряжение, равно как и ток, солнечной батареи и аккумулятора равны, но у MPPT это не так (о разнице ШИМ и МРРТ технологий читайте здесь). Как правило, в системе с MPPT контроллером ток в цепи аккумулятора в 1.5 – 2 раза больше тока солнечной батареи, поэтому крайне важно подбирать контроллер в соответствии с током именно аккумуляторной батареи.

В качестве входного напряжения солнечного контроллера следует понимать именно напряжение холостого хода солнечной батареи, никак не напряжение точки максимальной мощности. В отличие от ситуации с превышением мощности солнечных батарей, когда результат может быть различным, при превышении максимально допустимого входного напряжения, поломка произойдет с достаточно большой долей вероятности.

Не редко возникает необходимость в зимний период питать нагрузку автономно, это могут быть камеры видеонаблюдения, светофоры или уличное освещение. Ни для кого не секрет, что в данном случае солнечный массив должен быть довольно большим, чтобы обеспечить выработку необходимого количества энергии. Хорошенько поразмыслив, иногда инженеры приходят к следующему решению: в целях экономии установить контроллер меньшего номинала и, соответственно, меньше аккумуляторов, так как зарядный ток не высок. Объяснятся это тем, что зимой солнце светит слабо и большого зарядного тока просто не будет, а летом контроллер обрежет часть мощности солнечных батарей, что тоже неплохо, потому что мощность избыточна. Изящное, недорогое, простое и, к сожалению, неправильное решение. Первое, что стоит отметить: выработка солнечного массива рассчитывается исходя из среднемесячных значений за последние несколько лет, а в течение месяца солнечная активность может быть распределена очень неравномерно. Например, для северных районов характерна ситуация, когда в зимний месяц может быть 1-2 солнечных дня, а все остальное время пасмурная погода, когда выработки энергии вообще нет. Получается, чтобы обеспечить потребителя энергией в течение всего месяца, мы должны зарядить аккумуляторы большим солнечным массивом за один или два дня. Естественно, «обрезав» контроллер и аккумуляторы в данной ситуации мы можем свести эффективность всей системы «на нет». 

Второе. Если мощность солнечных батарей значительно превышает номинал контроллера, то это может привести к поломке устройства. Далеко не каждый MPPT контроллер имеет функцию ограничения мощности, в линейке мирового лидера, компании EpSolar, например, такую функцию имеет только новая серия контроллеров Tracer A.

Также в зимний период следует учитывать, что из–за низкой температуры КПД модуля станет больше. Температурный коэффициент для кремниевых солнечных батарей составляет 0,4-0,5%/°С, а номинальная мощность приводится для температуры равной 25°С. Таким образом, при температуре -25°С мощность солнечного массива может быть больше аж на 20%. Если также учесть тот факт, что к моменту выхода солнца аккумулятор может быть разряжен ниже расчётного напряжения, что бывает часто, зарядный ток может быть значительно превышен, контроллер окажется перегружен и может выйти из строя мгновенно.

Резюмируем самые важные нюансы подбора контроллера заряда для солнечных систем:

  • Подбирайте контроллер в соответствии с током аккумуляторной батареи;
  • В качестве входного напряжения контроллера следует понимать именно напряжение холостого хода, а не точки максимальной мощности;
  • Не устанавливайте контроллер меньшего номинала, даже если предполагается работа с неполной нагрузкой;
  • Если мощность солнечных батарей превышает номинал контроллера – это приведет к выходу последнего из строя.

Мы рассмотрели лишь некоторые, часто встречающиеся заблуждения, касающиеся подбора контроллера заряда. Чтобы не совершить лишних ошибок внимательно изучайте техническую документацию к оборудованию, а в случае сомнений обращайтесь к специалистам за помощью. 

              

Читать другие статьи…

www.helios-house.ru

Какой контроллер выбрать для солнечной батареи: стоимость, виды

Во время использования солнечной батареи самый сложный этап – это сохранить накопление энергии. Вырабатывается электричество только в светлый период времени, а расход идет и днем и ночью. Конечно, есть и аккумуляторы, но их использовать напрямую нельзя, ведь выйдет из строя все. В таком случае необходимо использовать специальные контроллеры, которые и будут регулировать расход. В этой статье мы вам расскажем, какой контроллер выбрать для солнечной батареи своими руками и расскажем основные секреты.

Виды контроллеров для солнечных батарей

Существует несколько типов контролеров, все они отличаются своей стоимостью и соответственно функциональностью. Итак, основные виды контроллеров:

  1. ON/OFF контроллер. Его можно назвать самым простым, принцип его работы заключается только в том, что он выключает подачу электричества, когда батарея полностью заряжена. Но, здесь есть и первый недостаток, батарея реагирует не на 100% а на 70%, поэтому быстро выходит из строя. Из преимуществ такого устройства можно назвать его низкую стоимость, плюс ко всему контроллер солнечных батарей своими руками собрать сможет каждый.
  2. ШИМ или PWM – это более продвинутые устройства. Они обеспечивают ступенчатую зарядку АКБ, позволяя продлить ему срок службы. Режимы заряда выбираются автоматически, АКБ может заряжаться до 100%, что уже считается отличным числом. Однако, есть и потеря заряда аккумулятора до 40% – это недостаток.
  3. MPPT контролер. Его можно назвать лучшим, он позволяет организовать экономичную и качественную работу АКБ и солнечных батарей. Данное устройство работает по вычислительной технологии и самостоятельно выбирает оптимальный заряд АКБ. Также рекомендуем почитать о том, какие лучшие производители ваакумированных солнечных батарей. 

Какой контроллер выбрать для солнечной батареи

Исходя из выше представленного описания, можно понять, что ON/OFF контролер не подходит для длительного использования. Его можно установить только в качестве тестера для работы всей системы. Его использовать, мы не рекомендуем, ведь цены на АКБ помнят все.

Лучше смотреть на ШИМ или PWM или MPPT, они являются более функциональными. Конечно, на них кусается и стоимость, но оно того стоит. Если говорить за технологию MPPT то она существенно продлевает жизнь АКБ, ведь заряд держится на уровне 93-97%, у ШИМ или PWM 60-70%.

Цена на контроллеры

Любая солнечная электростанция собирается только для экономии, так что, переплачивать лишние деньги для покупки дорогих комплектующих – это плохо. Интересная статья по теме: как выбрать недорогой аккумулятор для солнечной электростации.

Мы собрали для вас два самых популярных контролера для солнечных батарей, которые являются универсальными и лучшими в соотношении цена/качеств:

  1. MPPT Tracer 2210RN Solar Charge Controller Regulator он стоит 75 долларов, универсальный, распознает день/ночь, есть сертификаты качества и отличный КПД – 93%.
  2. Solar controller 20a его мы выделили из-за низкой цены – всего 20 долларов. Работает по технологии ШИМ или PWM, можно управлять с помощью компьютера. Установлен простой и понятный интерфейс, он позволяет с легкостью устанавливать все стандартные настройки.

Как сделать контроллер для солнечной батареи своими руками видео


Каждый должен понимать, что контролер для солнечных батарей можно собрать своими руками, однако для этого необходимо купить некоторые дополнительные элементы. Но, это выгодно, ведь собрать ШИМ или PWM можно всего за 10 долларов. Все это вы найдете в видео, которое мы нашли для вас в сети. Стоит отметить, что сделать контроллер MPPT в домашних условиях – невозможно.

Статья по теме: Лучшие производители солнечных батарей.

vse-elektrichestvo.ru

тестирование контроллера заряда / Habr

Привет geektimes!

В предыдущей части была рассмотрена и проверена работа платы BMS, обеспечивающей корректный заряд литий-ионного аккумулятора. Китайская почта наконец доставила Solar charge controller, так что пора протестировать и его.

Результаты тестирования под катом.

Контроллер заряда (Solar charge controller)


Данное устройство является основным во всей системе — именно контроллер обеспечивает взаимодействие всех компонентов — солнечной панели, нагрузки и батареи (он нужен, только если мы хотим именно накапливать энергию в батарее, если отдавать энергию сразу в электросеть, нужен другой тип контроллера grid tie).

Контроллеров на небольшие токи (10-20А) на рынке довольно-таки много, но т.к. в нашем случае используется литиевая батарея вместо свинцовой, то нужно выбирать контроллер с настраиваемыми (adjustable) параметрами. Был куплен контроллер, как на фото, цена вопроса от 13$ на eBay до 20-30$ в зависимости от жадности местных продавцов. Контроллер гордо называется «Intelligent PWM Solar Panel Charge Controller», хотя по сути вся его «интеллектуальность» заключается в возможности задания порогов заряда и разряда, и конструктивно он не сильно отличается от обычного DC-DC конвертора.

Подключение контроллера весьма просто, у него всего 3 разъема — для солнечной панели, нагрузки и аккумулятора соответственно. В качестве нагрузки в моем случае была подключена светодиодная лента на 12В, аккумулятор все тот же тестовый с Hobbyking. Также на контроллере есть 2 USB-разъема, от которых можно заряжать различные устройства.

Все вместе выглядело так:

Перед тем как использовать контроллер, его надо настроить. Контроллеры этой модели продаются в разных модификациях для разных типов батарей, отличия скорее всего лишь в предустановленных параметрах. Для моей литиевой батареи c тремя ячейками (3S1P) я установил следующие значения:

Как можно видеть, напряжение отключения заряда (PV OFF) установлено на 12.5В (исходя из 4.2В на ячейку можно было поставить 12.6, но небольшой недозаряд положительно сказывается на количестве циклов батареи). Следующие 2 параметра — отключение нагрузки, в моем случае настроено на 10В, и повторное включение заряда на 10.5В. Минимальное значение можно было поставить и меньше, до 9.6В, небольшой запас был оставлен для работы самого контроллера, который питается от той же батареи.

Тестирование


С разрядом проблем ожидаемо не было. Заряда батареи хватило чтобы зарядить планшет, также горела светодиодная лента, и при пороговом напряжении в 10В, лента погасла — контроллер отключил нагрузку, чтобы не разряжать батарею ниже заданного порога.

А вот с зарядом все пошло не совсем так. Вначале все было хорошо, и максимальная мощность по ваттметру составила около 50Вт, что вполне неплохо. Но ближе к концу заряда подключенная в качестве нагрузки лента стала сильно мерцать. Причина ясна и без осциллографа — две BMS не очень дружат между собой. Как только напряжение на одной из ячеек достигает порога, BMS отключает батарею, из-за чего отключается и нагрузка и контроллер, затем процесс повторяется. Да и учитывая что пороговые напряжения уже заданы в контроллере, вторая плата защиты по сути и не нужна.

Пришлось вернуться к плану «Б» — поставить на батарею только плату балансировки, оставив контроллеру управление зарядом. Плата 3S balance board выглядит так:

Бонус этого балансира еще и в том, что он в 2 раза дешевле.

Конструкция получилась даже проще и красивее — балансир занял свое «законное» место на балансировочном разъеме батареи, к контроллеру батарея подключена через силовой разъем.
Все вместе выглядит примерно так:

Больше никаких неожиданностей не было. Когда напряжение на батарее поднялось до 12.5В, потребляемая от панелей мощность упала практически до нуля а напряжение увеличилось до максимума «холостого хода» (22В), т.е. заряд больше не идет.

Напряжение на 3х ячейках батареи в конце заряда составило 4.16В, 4.16В и 4.16В, что дает в сумме 12.48В, к контролю заряда, как и к балансиру претензий нет.

Заключение


Система работает, почти как и ожидалось. Днем электроэнергия может накапливаться, вечером ее можно использовать. В финальной версии батарея будет заменена на блок из элементов 18650, которые уже описывались в предыдущей части. Емкость батареи можно увеличить до 20Ач, больше для балконной системы уже избыточно. Если же приобрести другой балансир, можно использовать и LiFePo4-аккумуляторы, достаточно установить нужные пороги напряжений в контроллере. Однако в моем случае, смысла в этом скорее всего нет — стоимость LiFePo4 на 10-20Ач составляет 80-100$, что уже сопоставимо со стоимостью Grid Tie контроллера, который я собираюсь протестировать в дальнейшем.

Продолжение в следующей части.

Еще исключительно для тестов (понятно что экономического смысла в этом нет) была заказана батарея ионисторов на 12В, благо цены падают и сейчас они относительно дешевые. Будет интересно проверить, на сколько хватит их заряда. Stay tuned.

Примечание: показанная на фото батарея от Hobbyking была поставлена исключительно для теста. Эти батареи не тестировались для постоянного использования в подобных системах, также их не рекомендуется оставлять без присмотра.

Более-менее окончательная версия батареи выглядит вот так:

Это 12 ячеек 18650, соединенных в группы параллельно по 4. Примерная емкость батареи около 12ач, этого хватает для зарядки разных гаджетов и для вечернего освещения комнаты светодиодной лентой. В батарее используются элементы Panasonic, те же что и в автомобилях Tesla S, надежность данных ячеек можно считать вполне хорошей.

Для желающих посмотреть видео-версию, ролик выложен в youtube.

habr.com

Контроллер заряда солнечной батареи

Среди современных гелиосистем большую популярность приобрели те, что работают автономно и не подключаются к электрической сети. То есть, они функционируют в замкнутом режиме. Например, в рамках энергоснабжения одного дома. В состав подобных систем входят солнечные панели (и/или ветряной генератор), контроллер заряда, инвертор, реле, аккумулятор, провода. Контроллер в этой схеме является ключевым элементом. В этой статье мы поговорим о том, для чего нужен контроллер солнечных батарей, какие бывают разновидности и как выбрать такое устройство.

 

Содержание статьи

Для чего нужен солнечный контроллер?

Как уже было сказано, контроллер заряда является ключевым элементом гелиосистемы. Это электронное устройство, работающее на базе чипа, который контролирует работу системы и управляет зарядом аккумулятора. Контроллеры для солнечных батарей не допускают полной разрядки аккумулятора и его излишнего заряда. Когда заряд аккумуляторной батареи находится на максимальном уровне, то величина тока от фотоэлементов уменьшается. В результате подаётся ток, необходимый для компенсации саморазряда. Если аккумулятор чрезмерно разряжен, то контроллер отключит от него нагрузку.

Итак, можно обобщить функции, которые выполняет контроллер солнечных батарей:

  • многостадийный заряд аккумулятора;
  • отключение зарядки или нагрузки при максимальном заряде или разряде, соответственно;
  • включение нагрузки, когда заряд батареи восстановлен;
  • автоматическое включение тока с фотоэлементов для зарядки аккумулятора.

Можно сделать вывод, что подобное устройство продлевает срок службы аккумуляторов и их поломку.

Контроллер заряда солнечных батарей


Вернуться к содержанию
 

Параметры выбора

На что же следует обратить внимание при выборе контроллера для солнечных батарей? Основные характеристики изложены ниже:

  • Входное напряжение. Максимальное напряжение, указанное в техническом паспорте, должно быть на 20 процентов выше напряжения «холостого хода» батареи фотоэлементов. Это требование появилось из-за того, что производители часто ставят завышенные параметры контроллеров в спецификациях. Кроме того, при высокой солнечной активности напряжение солнечных модулей может быть выше, чем указано в документации;
  • Номинальный ток. Для контроллера типа PWM номинал по току должен на 10 процентов превышать ток короткого замыкания батареи. Контроллер типа MPPT нужно подбирать по мощности. Его мощность должен быть равна или выше напряжения гелиосистемы умноженного на тока регулятора на выходе. Напряжение системы берётся для разряженных аккумуляторов. В период высокой солнечной активностью к полученной мощности следует прибавить 20 процентов про запас.

Не нужно экономить на этом запасе. Ведь экономия может плачевно сказаться в период высокой солнечной инсоляции. Система может выйти из строя и убытки будут гораздо больше.

Вернуться к содержанию
 

Виды контроллеров

Контроллеры On/Off

Эти модели являются самыми простыми из всего класса контроллеров заряда для солнечных батарей.

Контроллер заряда On/Off для гелиосистем

Модели типа On/Off предназначены для того, чтобы отключать заряд аккумулятора, когда достигается верхний предел напряжения. Обычно это 14,4 вольта. В результате предотвращается перегрев и излишний заряд.

С помощью контроллеров On/Off не получится обеспечить полную зарядку аккумуляторной батареи. Ведь здесь отключение происходит в том момент, когда достигнут максимальный ток. А процесс зарядки до полной ёмкости ещё необходимо поддерживать несколько часов. Уровень заряда в момент отключения находится где-то 70 процентов от номинальной ёмкости. Естественно, что это негативно отражается на состоянии аккумулятора и снижает срок его эксплуатации.
Вернуться к содержанию
 

Контроллеры PWM

В поисках решения неполной зарядки аккумулятора в системе с устройствами On/Off были разработаны блоки управления, основанные на принципе широтно-импульсной модуляции (сокращённо ШИМ) заряжающего тока. Смысл работы такого контроллера заключается в том, что он понижает заряжающий ток, когда достигается предельное значение напряжения. При таком подходе заряд аккумулятора доходит практически до 100 процентов. Эффективность процесса увеличивается до 30 процентов.

Контроллер заряда PWM



Есть модели PWM, которые умеют в зависимости от температуры ОС регулировать ток. Это хорошо сказывается на состоянии аккумулятора, уменьшается нагрев, лучше принимается заряд. Процесс становится регулируемым в автоматическом режиме.

ШИМ контроллеры заряда для солнечных батарей специалисты рекомендуют применять в тех регионах, где наблюдается высокая активность солнечных лучей. Их часто можно встретить в гелиосистемах маленькой мощности (менее двух киловатт). Как правило, в них работают аккумуляторные батареи небольшой ёмкости.

Вернуться к содержанию
 

Регуляторы типа MPPT

Контроллеры заряда МРРТ сегодня являются самыми совершенными устройствами для регулирования процесса заряда аккумуляторной батареи в гелиосистемах. Эти модели увеличивают эффективность генерации электричества на одних и тех же солнечных батареях. Принцип работы устройств MPPT основан на определении точки максимального значения мощности.

Контроллер заряда MPPT

MPPT в постоянном режиме следит за током и напряжением в системе. На основании этих данных микропроцессор подсчитывает оптимальное отношение параметров для того, чтобы достигнуть максимальной выработки по мощности. При регулировке напряжения и учитывается даже этап процесса зарядки. MPPT контроллеры солнечных батарей даже позволяют снимать большое напряжение с модулей, затем преобразовывая его в оптимальное. Под оптимальным понимается то, которое обеспечивает полную зарядку АКБ.

Если оценивать работу MPPT по сравнению с PWM, то эффективность функционирования гелиосистемы возрастёт от 20 до 35 процентов. К плюсам также стоит отнести возможность работы при затенении солнечной панели до 40 процентов. Благодаря возможности поддержания высокого значения напряжения на выходе контроллера можно использовать проводку небольшого сечения. А также можно поставить солнечные панели и блок на большее расстояние, чем в случае с PWM.
Вернуться к содержанию
 

Гибридные контроллеры заряда

В некоторых странах, например, США, Германии, Швеции, Дании значительную часть электроэнергии вырабатывают ветрогенераторы. В некоторых маленьких странах альтернативная энергетика занимает большую долю в энергосетях этих государств. В составе ветряных систем также работают устройства для управления процессом заряда. Если же электростанция представляет собой комбинированный вариант из ветрогенератора и солнечных батарей, то применяют гибридные контроллеры.

Гибридный контроллер



Эти устройства могут быть построены схеме МРРТ или PWM. Основное отличие заключается в том, что в них используются другие вольтамперные характеристики. В процессе работы ветряные генераторы дают очень неравномерную выработку электроэнергии. В результате на аккумуляторные батареи поступает неравномерная нагрузка, и они работают в стрессовом режиме. Задача гибридного контроллера заключается в сбросе избыточной энергии. Для этого, как правило, используются специальные тэны.
Вернуться к содержанию
 

Самодельные контроллеры

Люди, которые разбираются в электротехнике, часто сами собирают контроллеры заряда для ветрогенераторов и солнечных батарей. Функциональность подобных моделей часто уступает по эффективности и набору функций фабричным устройствам. Однако в небольших установках маленькой мощности самодельного контроллера вполне достаточно.

Самодельный контроллер заряда для гелиосистем

При создании контроллера заряда своими руками следует помнить о том, что суммарная мощность должна удовлетворять следующему условию: 1,2P ≤ I*U. I – это выходной ток контроллера, U – это напряжение при разряженной батарее.

Схем самодельных контроллеров существует довольно много. Их можно поискать на соответствующих форумах в сети. Здесь следует сказать лишь о некоторых общих требованиях к такому устройству:

  • Напряжение зарядки должно быть 13,8 вольта и меняется в зависимости номинального значения силы тока;
  • Напряжение, при котором происходит отключение заряда (11 вольт). Эта величина должна быть настраиваемой;
  • Напряжение, при котором включается заряд 12,5 вольта.

Так, что если вы решили собрать гелиосистему своими руками, то придётся заняться изготовлением контроллера заряда. Без него при эксплуатации солнечных батарей и ветрогенератров не обойтись.

Вернуться к содержанию
 

Некоторые особенности контроллеров заряда солнечных батарей

В заключение нужно сказать ещё о нескольких особенностях контроллеров заряда. В современных системах они имеют ряд защит для повышения надёжности работы. В таких устройствах могут быть реализованы следующие виды защиты:

  • От неправильного подключения полярности;
  • От коротких замыканий в нагрузке и на входе;
  • От молнии;
  • От перегрева;
  • От входных перенапряжений;
  • От разряда аккумулятора в ночное время.

Кроме того, в них устанавливаются всевозможные электронные предохранители. Чтобы облегчить эксплуатацию гелиосистем, контроллеры заряда имеют информационные дисплеи. На них отображается информация о состоянии аккумуляторной батареи и системы в целом. Здесь могут быть такие данные, как:
  • Степень заряда, напряжение АКБ;
  • Ток, отдаваемый фотоэлементами;
  • Ток для заряда батареи и в нагрузке;
  • Запасённые и отданные ампер-часы.

На дисплее может также выдаваться сообщение о понижении заряда, предупреждение об отключении питания в нагрузку.

Некоторые модели контроллеров для солнечных батарей имеют таймеры для активации ночного режима работы. Существуют сложные устройства, управляющие работой двух независимых батарей. В их названии обычно есть приставка Duo. Стоит также отметить модели, которые умеют сбрасывать лишнюю энергию на тэны.

Интересны модели, имеющие интерфейс для подключения к компьютеру. Так можно значительно расширить функционал наблюдения за гелиосистемой и управления ей.


Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию

akbinfo.ru


Смотрите также