Как выбрать плазменный резак


Выбор машины плазменной резки с ЧПУ: Вопросы и ответы

Для многих самозанятых производителей предпринимательская деятельность начинается с покупки сварочного аппарата. Имеющиеся навыки сварщика предприимчивый человек может положить в основу своего нового бизнеса.

Конечно, любой новый бизнес нужно развивать. Большинство предпринимателей начинают принимать заказы на более сложные сварные конструкции или увеличивать количество выпускаемых изделий. На этом этапе многие решают добавить в свой арсенал механизированную плазменную резку.

Ниже приведены вопросы и ответы, которые призваны помочь владельцам производств узнать о возможностях современных плазменных машин, чтобы рассмотреть их внедрение в свою производственную систему.

Каких допусков и толщины резки можно достичь с помощью современной машины для плазменной резки с ЧПУ?

Допуски зависят от многих составляющих, таких как навык оператора, скорость, высота резака, толщина материала, вид материала, размер детали, сложность детали, и, самое главное, качество (точность) машины для резки. Тем не менее, средняя величина отклонения при плазменной резке составляет 0,4-0,5 мм.

Какие факторы влияют на выбор мощности плазменного источника?

Главные параметры, на которых основывается выбор, это ваши производственные задачи и имеющийся бюджет, в производственной задаче основное — это тип и толщина материала.

Существуют ещё дополнительные критерии:

  • требования к качеству реза, качеству отверстий,
  • сложность готового продукта,
  • дополнительные процессы,
  • желаемый объём выпуска (требуемое количество изделий и скорость их производства),
  • требования по подготовке кромок (подготовка кромок заключается в резке металла под углом, что увеличивает реальную разрезаемую толщину).

Можно ли с помощью современных плазменных технологий разрезать алюминий и нержавеющую сталь? Каких результатов можно добиться?

В последнее время произошло значительное развитие технологии плазменной резки, что изменило прежнее представление о качестве резки низкоуглеродистой, нержавеющей стали и алюминия. Плазменная резка сейчас предоставляет обширные опции для обработки этих материалов под множество задач. Например, один из новейших плазменных источников питания имеет возможность смешивания трёх газов – аргона, водорода и азота, – с использованием которых достигаются повышенные показатели резки нержавеющей стали и алюминия.

О чём стоит задуматься при определении необходимых размеров стола? Какие варианты существуют?

Размеры столов могут очень разниться от маленьких (1х1 м) до больших (10-60 м), в зависимости от производственных потребностей.

Определяющими факторами при выборе размера стола являются размеры разрезаемого листа, необходимость одновременной загрузки нескольких листов и способ погрузки/разгрузки. В дополнение к этому стоит учитывать количество доступной площади на производственной площадке.

Для большинства целей изготовители выбирают два типа столов – секционные и водяные. Секционные столы разделены на зоны, которые открываются и закрываются, вытягивая дым из той секции, на которой происходит резка. Водяные столы имеют возможность самостоятельно поднимать или опускать уровень воды в зависимости от ситуации. У водяных столов нет системы удаления дымов, которая есть у секционных столов, поэтому не рекомендуется разрезать алюминий (особенно алюминиево-литиевые сплавы) на таких столах.

Можно ли решить вопрос вентиляции сразу при выборе стола для резки, или лучше сделать это позже, на месте?

Систему отвода дымов нужно продумывать сразу, планируя покупку стола.

Водяные столы работают за счёт удерживания дыма, пыли, осколков, частиц и шлака в воде. Происходит охлаждение шлака и ограничивается попадание дыма и других частиц в рабочее пространство. В процессе резки кинетическая энергия направляет отходы в воду.

Секционные столы удаляют дым из рабочей зоны, засасывая его в воздуховоды стола, а затем пропускают через фильтры. На выходе получается пригодный для дыхания воздух.

Размер секций должен обеспечивать удаление всех продуктов резки из рабочей зоны. Количество выделяемого дыма и иных субстанций зависит от вида разрезаемого материала, а также от режимов резки. Значительно большая сила всасывания нужна при применении многорезакового блока.

Какие знания нужно иметь, чтобы запрограммировать машину плазменной резки с ЧПУ? Как долго этому нужно учиться?

Человек, знакомый с процессом резки, может просто научиться основам программирования с помощью вебинаров, обучающих видео, или пообщавшись со специалистом. Всё это не займёт много времени, можно успеть за пару дней. Как и в любом процессе, программист и оператор извлекут максимум полезной информации, если будут иметь интерес, любопытство и постоянно применять свои знания на практике.

Каких мероприятий по обслуживанию требует стол для термической резки?

Машины требуют периодической чистки, смазки, проверки рабочих жидкостей согласно регламенту производителя. Источники питания и органы управления также требуют проведения систематической диагностики. Очень рекомендуется проводить ежегодную общую диагностику всех систем, что позволит увеличить срок службы машины.

При каких обстоятельствах следует рассматривать использование кислородной резки в дополнение к плазменной?

Подходящий материал. В процессе газокислородной резки металл разогревается до температуры горения, а поток кислорода под давлением окисляет металл и выдувает его из зоны резки. Кислородная резка хорошо подходит для таких углеродистых сталей, поскольку температура плавления оксида железа относительно невысока.

Однако, газокислородная резка неприменима для нержавеющей стали, так как этот материал не окисляется, а также для алюминия, который плавится слишком быстро из-за слишком низкой температуры плавления.

Плазма, в свою очередь, хороша для резки сталей, нержавеющих сталей и алюминия.


Стоимость эксплуатации. Для осуществления газовой резки необходим горючий газ и кислород. Стандартными горючими газами являются природный газ и ацетилен, но пропан, водород и их комбинации также применяются. Если сравнить стоимость за один кубический метр, то кислород и природный газ существенно дешевле, чем применяемые при плазменной резке газы.

Плюс, стоимость газового резака, шлангов, сопел и иных расходных частей обычно ниже, чем быстроизнашивающиеся части плазменной системы.

Скорость. Как известно, газокислородные системы используются, когда задачи резки превышают возможности плазменных систем. Выбор падает на газокислородную резку, если требуется разрезать изделие толщиной более 50 мм. Для деталей сложных форм и меньшей толщины (особенно для нержавеющей стали и алюминия), плазменная система будет наилучшим вариантом.

Скорость плазменной резки значительно выше скорости кислородной, особенно при толщинах до 30 мм. Кислородная резка – относительно медленный процесс.

Однако, это меняется при использовании нескольких газовых резаков одновременно. Например, система плазменной резки быстрее двух кислородных резаков при толщине металла до 50 мм. Когда одновременно работают сразу 4 газовых резака, плазма остаётся эффективней только на толщинах до 30 мм.

Каковы преимущества технологии плазменной резки HD?

HD плазма (англ. High-Definition – Высокое разрешение) – усовершенствованный процесс резки, который обеспечивает повышенные показатели качества реза, скорости и меньший угол скоса, чем стандартный плазменный процесс на толщинах до 50 мм. Это достигается благодаря улучшенной форме сопла, делающей дугу более узкой.

Система плазменной резки HD обеспечивает упрощают автоматизацию, позволяя операторам с разным уровнем опыта и профессионализма достигать очень высоких результатов качества.

Позволяет ли применение HD-плазмы избежать необходимости выполнять дополнительную подготовку изделия перед сварочными операциями?

Да, HD-плазма действительно обладает таким преимуществом. Плазменные системы, в которых используется воздух, делают поверхность реза азотированной, чего не происходит в системах HD. В результате, пользователю не нужно дополнительно обрабатывать свариваемые поверхности. Окалина на краях почти не образуется, а отверстия практически не имеют конусности.

В данной статье мы коснулись основных и наиболее важных нюансов выбора машины термической резки с ЧПУ. Как и с любым сложным техническим устройством, существуют и другие тонкости данного процесса, которые необходимо учесть перед покупкой. Именно поэтому мы рекомендуем вам обратиться к надёжной и опытной команде специалистов компании «ДельтаСвар», чтобы в кратчайшие сроки получить решение, полностью удовлетворяющее вашим задачам.

Станьте партнёром «ДельтаСвар» прямо сейчас и будьте уверены, что для вашего производства не будет ничего невозможного!

Если у вас появились вопросы, команда «ДельтаСвар» предоставит любую необходимую дополнительную информацию, включая информацию о нашем широком спектре услуг. Просто напишите по электронной почте или позвоните нам по телефону +7 (343) 384-71-72 (добавочный номер 220).

Читайте также:

Новая машина термической резки — Eckert CHROME
Недавно компанией Eckert была представлена новейшая модель установки для термической резки металла – CHROME. CHROME — это установка нового поколения, одна из немногих на европейском рынке, соответствующая последним стандартам, например, стандарту DIN-EN 17916 «Безопасность машин термической резки». ...

Труборезы Georg Fischer: новая реальность
Свое начало по производству труборезов и машин для снятия фаски подразделение Georg Fischer Pipe Coupling Technology берет с 1960 года в городе Шаффхаузен (Швейцария), когда ее первым производимым оборудованием стали станки серии GF 4 и RA 4. Зарекомендовав себя на рынке как производитель высококачественного и современного оборудования, в 1993 году основывается компания GF Rohrverbindungstechnik GmbH. Управление и команда продаж были перенесены в Зинген (Германия). ...

Сварочные аппараты EVOSPARK: произведено в России!
Принимая во внимание нынешнюю нестабильность курса иностранных валют, большинство производственных предприятий изучает вопрос о подборе и закупке альтернатив импортному промышленному оборудованию. Не обошло стороной и направление стандартной сварочной техники. ...

Сварочный стол: советы по выбору от А до Я
Во время выполнения сварочных работ большую часть времени занимает подготовка материала для процесса сварки. По этой причине наиболее точное позиционирование компонентов конструкции в кратчайшие сроки существенно влияет на высокое качество и оптимальную рентабельность производственного процесса. ...

Пильные полотна и фрезы для холодной резки труб
Холодная резка труб примечательна тем, что она дает возможность производить качественный рез по точно намеченному размеру. При использовании данного процесса формируется гладкий срез по заданной траектории, а последующая обработка не требуется. Главными рабочими частями при данном процессе являются пильные полотна. ...


Поделиться ссылкой:

www.deltasvar.ru

выбор аппарата для воздушно плазменной резки, станки и портативное оборудование

Договоримся-ка сразу. Если вас интересуют вопросы, касающиеся сварки в бытовых или кустарных условиях, то вам эту статью можно не читать. – не детский сад и никоим образом не домашний инструмент. Если работы простые и разовые, можно поработать болгаркой.

Но уж если технические задачи стоят серьезные, а объемы работ огромные, то без резака для плазменной резки будет сложно. Это любимый инструмент в машиностроении всех профилей и многих других серьезных отраслях, где нужны «кройка и шитье» из металла.

Виды плазменных резаков

Все зависит от того, какие у вам планы, и где вы собираетесь работать. Дело в том, что плазморезы отличаются высокой вариативностью моделей. Они отличаются друг от друга не только эстетически, но и конструктивно: у них, к примеру, разные виды поджига электрической дуги и разные системы охлаждения.

Плазморезы могут быть переносными, могут представлять из себя целые портальные установки. Есть модели шарнирно-консольного типа, встречаются установки с приводом координатного вида. Особое место занимают аппараты с программным управлением.

Все резаки можно разделить следующим образом:

  • Аппараты для работы в среде инертных и защитных газов: водорода, гелия и, конечно же, аргона.
  • Резаки, функционирующие в среде окислительных газов – газов, которые насыщены кислородом.
  • Резаки для работы с различными смесями.
  • Для использования в стабилизаторах.
  • Резаки с магнитной стабилизацией.

Принцип работы плазменной резки.

Классификация по виду потребляемой энергии:

  • Бытовые резаки, которые подключаются к сети с напряжением 220 В.
  • Профессиональные или промышленные, работающие только от сети с напряжением 380 В.

Следует учитывать, что даже бытовой с самыми скромными показателями мощности нужно проверить с подключением к общей сети: нагрузка сети будет очень серьезной. К тому же к резаку часто подключается компрессор для охлаждения. Его совсем немаленькую мощность также нужно учитывать при подключении.

Еще один критерий делит плазморезы ровно на две группы:

Резаки инверторного типа

отличный инструмент эконом-класса, который способен резать металл толщиной до 30-ти мм. Их используют чаще в быту и в малых мастерских. Энергопотребление у них весьма скоромное, они компактны: небольшого веса и изящных габаритов.

Большинство моделей являются переносными или ручными аппаратами. С их помощью можно работать в труднодоступных местах. Дополнительное преимущество – неплохой коэффициент полезного действия – выше на 30%.

Плазморезы трансформаторного типа

Они стоимостью подороже. Это больше походе на станок , как большой короб на колесиках. Режут металл с серьезной толщиной – вплоть до 80-ти мм. Они значительно тяжелее и больше по габаритам, чем инверторные.

Эти вес и размеры можно простить за большую надежность: обычно они не выходят из строя при скачках напряжения в сети, что чрезвычайно актуально для некоторых регионов. Продолжительность бесперебойного включения у этих аппаратов фантастическая – вплоть до 100%.

Это означает, что трансформаторный резак может работать весь день без перерыва. Кроме большого веса и крупных габаритов у этого вида аппаратов есть еще один недостаток: высокое потребление энергии. Как говориться, большому кораблю большое плавание.

Плазменные резаки можно разделить по виду контакта:

  • Контактные, которые имеют контакт с металлом. Режут детали с толщиной не больше 18-ти мм.
  • Бесконтактные, которым под силу резка металлов практически любой толщины.

Контактная плазменная резка

Это выглядит следующим образом: электрическая дуга соединяет плазмотрон и поверхность разрезаемой металлической детали, иными словами – дуга прямого действия. Вектор этой дуги всегда совмещается с потоком плазмы, выходящим из сопла под большим давлением с высокой скоростью.

Схема режущего плазмотрона.

Раскаленный воздух представляет из себя плазму, он давит на дугу и сообщает ей режущие свойства. Если учесть высочайшую температуру на уровне 3000°С, происходит то самое механическое воздействие на металл, которое называется резкой.

Данный тип резки используется в работе с высокопроводными металлами. Преимущественно это детали с неправильными контурами, трубы, прутки, металлические полосы и уголки, различные отверстия в заготовках и т.д.

Бесконтактная плазменная резка

Здесь режущим инструментом является струя из плазмы, идущая из сопла с огромной скоростью. Что же касается дуги, то она формируется между наконечником плазмотрона и электродом.

Эта технология применяется в работе с материалами, которые плохо проводят ток. Это неметаллы, к примеру, камень.

Еще один принцип классификации резаков на аппараты ручной или машинной резки.

Ручные воздушно-плазменные резаки

Это самые демократичные модели и по цепне, и по сфере применения. Нельзя сказать, что они стали эдакими домашними котиками для резки новогодней фольги, но в автомастерских, к примеру, они стали широко использоваться для резки деталей самого разного калибра.

Производительность у них не бог весть какая прежде всего потому, что резак находится в руках у оператора, которому приходится держать его на весу и вести по линии разреза. Понятно, что об идеальной точности и ровности разреза говорить не приходится.

Чтобы исправить это, можно использовать специальный упор. Этот упор размещают на сопле, придавливают к поверхности заготовки и таким образом ведут резак по линии разреза.

Стоимость ручного плазменного резака зависит от их функциональных возможностей, включая применяемую силу тока и максимальную толщину металла, которую можно будет с их помощью разрезать.

На рынке появились чрезвычайно интересные универсальные модели, с помощью которых можно как резать, так и варить металлические детали. Стоят они недешево, но вполне приемлемо: около 500 USD. Заметить такие модели можно с помощью маркировки.

Аппараты плазменной резки машинного типа

Данные модели практически всегда снабжены программным обеспечением, благодаря которому участие оператора из процесса исключено. Понятно, что сразу же повышаются производительность и общая эффективность работы аппарата. Ну а главная фишка – идеальная точность резки.

Дополнительный бонус от машинного резака – отсутствие какой-либо необходимости обрабатывать края после резки, они и так идеальные.

Для начала работы вводится схема, по которой будет произведена любая форма или фигура резки.

Режимы плазменной резки.

Стоимость машинных устройств на несколько порядков выше, чем у ручных аппаратов . Данные аппараты состоят из мощных трансформаторов и технического стола в виде ровной поверхности с направляющими.

Цена зависит от комплектующих, габаритов и функциональности программного обеспечения. Так или иначе стоимость любой машинной модели будет находиться в диапазоне 3000 – 20000 USD.

Водно-плазменные резаки

Помимо аппаратов воздушно-плазменной резки существуют и модели водно-плазменного типа. В этом случае вода играет роль охладителя, а плазму образует не воздух, а водяной пар.

Устройства воздушно-плазменной резки – отличная опция благодаря низкой цене и компактности, но у них есть существенный недостаток – ограничения в толщине разрезаемого металла, этот лимит составляет всего 80 мм.

А вот мощность водно-плазменных резаков намного выше, и поэтому позволяет работать с массивными деталями. Если говорить о пресловутой стоимости, то да, эти модели дороже.

Принцип работы у них совсем другой. Вместо воздуха под давлением используется водяной пар. При таком раскладе не нужен компрессор для воздуха, не нужны баллоны с газом – водяной пар отлично справляется со всеми задачами самостоятельно.

Дело в том, что по консистенции водяной пар значительно более вязкий, чем воздух. В результате этой «счастливой» вязкости водяного пара нужно намного меньше.

При прохождении через плазмотрон электрической дуги в него подается вода, которая мгновенно начинает испаряться. Пар ионизируется под действием загоревшейся электрической дуги и рабочей жидкости, которая поднимает катод полюса с минусом от катода полюса сопла с плюсом.

Одна из самых известных моделей водно-плазменного типа – аппарат «Горыныч» со стоимость примерно 800 USD.

Физика процесса плазменной резки

Чтобы работал, нужны всего лишь воздух и электрическая энергия. На режущую часть аппарата подается ток с высокой частотой. В результате в плазмотроне формируется дуга с очень высокой температурой: около 8000°С.

Разновидности плазменных резаков.

Туда же, в плазмотрон, поступает и проходит через раскаленную дугу воздух в сжатом состоянии, который впоследствии ионизируется. В результате этот воздух становится отличным проводником тока, он становится той самой плазмой.

Плазма под большим давлением выходит из сопла и разогревает металлическую деталь до начала плавления. Расплавленный металл частицами выдувается воздухом, выходящим из сопла под большим давлением. Это и есть та самая резка металла.

Скорость потока плазмы зависит от расхода воздуха: если его увеличить, скорость потока плазмы повысится. При силе переменного тока в 250 А скорость плазменного потока составляет примерно 800 м/сек.

Как устроен аппарат плазменной резки?

Главные элементы аппаратов плазменной резки металла – плазмотрон, источник электропитания и так называемый кабель-шланговый пакет для соединения с компрессором. В качестве источника питания могут быть использованы инвертор или трансформатор.

Плазмотрон

Это главная часть аппарата плазменной резки. В свою очередь, он состоит из сопла, электрода и изолятора. По своей форме это корпус с камерой цилиндрической формы и малым выходным каналом, в котором формируется дуга. Электрод находится с тыла камеры, его функция – возбуждение дуги.

Электроды

Это специальные расходники, сделанные именно для резки металла. Чаще их производят из циркония, тория или гафния. Самые распространенные – из гафния.

С бериллием и торием нужно быть поосторожнее – эти элементы обладают радиоактивным компонентом.

Все эти элементы отличаются тем, что на их поверхности формируются оксиды с тугоплавкими свойствами. Эти оксиды как раз и защищают электрод от разрушения.

Розжиг или возбуждение дуги напрямую между электродом и металлической заготовкой произвести сразу трудно. Поэтому первым делом разжигается промежуточная дуга между электродом и плазмотроном. Затем воздух под давлением проходит чрез дугу, ионизируясь и нагреваясь.

Схема устройства плазменного резака.

В итоге объем этого воздуха повышается в объеме во много раз, он превращается в поток плазмы. Плазма вырывается из суженого конца сопла с огромной скоростью и высочайшей температурой вплоть до 30000°С.

Такому потоку все по силам, в дополнение ко всему он обладает очень высокой теплопроводностью – практически такой же, как у металла заготовки, которую нужно резать.

Настоящая дуга – та самая, которая нужна, формируется при выходе плазмы из сопла плазмотрона. Теперь именно эта рабочая дуга является главным режущим фактором.

Сопло плазмотрона

Различается по диаметру, от которого будут зависеть функциональные возможности всего аппарата. Прежде всего эта зависимость касается объема ионизированного воздуха, выходящего из сопла: именно им обусловлены главные характеристики резака – скорости работы и охлаждения, ширина шага реза.

Чаще встречаются сопла с малым диаметром, не превышающим 3-х мм. Зато длина сопла больше – около 10-ти мм.

Защитные газы

Прежде всего эти газы образуют плазму, их даже называют плазмообразующими. Такие газы используются только в мощных промышленных аппаратах для резки толстых металлов. Чаще это гелий, аргон, азот и их различные смеси. Кстати, кислород сам по себе также является защитным и плазмообразующим газом. Он используется в резаках небольшой мощности для резки металлов не толще 50-ти мм.

В плазмотроне расходными материалами являются сопло и электроды. Их нужно менять в положенных сроки.

Преимущества метода плазменной резки

Плюсы этих устройств нужно хорошо знать, равно как и минусы, без которых не обходится ни одно техническое приспособление.

Прежде всего помним, что скромные бытовые задачи по резке металла вполне можно реализовать с помощью обычной болгарки и не заморачиваться с дорогим и непростым плазменным оборудованием.

Плазменный резак обладает следующими положительными свойствам:

  • Высокая скорость рабочего процесса. Если сравнить ее с газовой горелкой, то скорость резки выше в шесть раз. Быстрее в природе только лазерная резка.
  • Большая толщина металла, который он способен резать в отличие от болгарки.
  • Плазменному резаку под силу любой тип металла. Для этого важно знать и верно выставлять необходимые режимы согласно спецификациям.
  • Непродолжительные и несложные подготовительные работы. Не нужна зачистка поверхностей.
  • Уникальная точность и ровность среза. Нет никаких наплывов, не нужны специальные упоры.
  • Отсутствие каких-либо дефектов и деформаций металла благодаря невысокой температуре общего нагрева.
  • Способность аппарата производить срезы любой формы, включая фигурные.
  • Высокая безопасность процесса: нет баллонов с газом.

Чертеж устройства плазменного резака.

Недостатки плазменного резака:

  • Высокая стоимость аппарата.
  • Нет возможности резки одновременно несколькими резаками.
  • Строгие требования к положению инструмента: плазма должна быть строго перпендикулярной поверхности заготовки. Сегодня выпускаются продвинутые аппараты, способные работать под углом от 20-ти до 50-ти градусов, но они еще дороже.
  • Ограничение толщины разрезаемого металла – примерно до 10-ти с. В сравнении кислородная горелка режет металл толщиной в полметра.

При всех, казалось бы, значительных минусах плазморезы очень популярны. В небольших мастерских работают ручными моделями, которых предлагается на рынке огромное множество. Сегодня плазменная резка перестала быть недоступным элитарным методом работы.

Плазменный резак своими руками

Сразу заметим, что плазменной резки не обязательно быть профессиональным сварщиком, опыт в сварке здесь не нужен. Если вы задумали сделать такой аппарат своими руками, примите к сведению, что у вас появится возможность идеально резать кроме металла другие материалы: пластик, дерево, керамику и пр.

Плазменный резак – дорогое удовольствие даже в виде самых простых ручных моделей, поэтому сделать самодельный аппарат имеет смысл: овчинка выделки стоит.

Единственное, что нужно купить – это источник питания и сопло. Если вы все сделаете правильно, ваш аппарат не будет уступать заводским экземплярам по своим рабочим качествам.

Для образования плазмы нужен воздух, а для системы охлаждения нужна вода или тосол, которые заливаются в специальную емкость.

Стержень нужно брать вольфрамовый., с его помощью будет формироваться электрическая дуга. Все комплектующие всегда имеются в хозяйственных магазинах. Собрав все необходимое оборудование для , аппарат производится по схемам, которые представлены в сети в большом количестве.

Какой резак выбрать

Начнем с факта, известного любому сварщику, который распространяется и на плазменную резку: чем выше сила тока, тем выше скорость рабочего процесса. Есть и другие параметры, которые следует учитывать при выборе инструмента для своей работы.

Толщина и тип металла – один из главных критериев. В сети можно найти множество табличного материала с техническими характеристиками плазменных резаков в зависимости от них. К примеру, чтобы с успехом резать медный лист толщиной в 2 мм, вам понадобится устройство с допустимой силой тока в 12 А.

Важным правилом является обязательный «запас» силы тока: покупать резак помощнее, чем указывается в таблицах. Дело в том, что табличные параметры – это максимальные цифры, с этими значениями аппарат может работать лишь непродолжительное время.

Схема работы плазменного резака.

Грамотнее всего выбор по трем критериям: скорости рабочего процесса, времени резки и мощности.

  • Нужная рабочая мощность определяется с учетом толщины планируемого металла и его вида. К примеру, мощность в 90А позволит резать металл толщиной до 30-ти мм.
  • Если металл толще, нужно выбирать резак с мощностью в диапазоне 80 – 180А.
  • Диаметр сопла и выбор типа потока всегда зависит от типа разрезаемого металла.
  • Важными параметрами выбора станка плазменного резака являются также номинальное первичное напряжение и сила тока.
  • Нужно решить, какой тип аппарата вам нужен – универсальный или специального назначения.
  • Проверка адекватности аппарата к электрической сети обязательна: можно ли его подключать к общей сети или нужна профессиональная с другим напряжением. Аппараты попроще работают только при 220 или 380В, фазы питания могут быть одно- и трехфазными.
  • Скорость резки металла измеряется в см/мин.
  • Еще один важный и показательный критерий – способность резака работать непрерывно в течение долгого времени, иными словами – продолжительность работы без перерыва. Если она указана как 50%, это значит, что аппарат после 5-ти минут непрерывной резки должен быть выключенным также 5 минут.

Полезные советы по покупке и уходу

Особенности выбора и ухода за резаком:

  1. Если есть выбор, всегда останавливайтесь на тех моделях, у которых есть евроразъем.
    В этих моделях не будет никаких проблем с подключением или удлинением кабель-шлангового пакета и других элементов между собой.
  2. На расходных материалах не экономим.
    Только качественные будут работать на идеальный рез и долговечность резака. Быстрее всего изнашиваются сопло и катод, следовательно, за стоянием этих элементов нужно следить с особой тщательностью.
  3. Резак – это резак, поэтому правила безопасности в данном случае имеют железобетонный характер.
    Нужно иметь защитный щиток, специальные очки. Имейте в виду, что плазменная резка – это брызги расплавленного металла. Поэтому вам не помешают и перчатки, и даже защитная обувь.
  4. Работа на максимальной мощности предопределяет последующую остановку в работе.
    Одна из важнейших технических характеристик станков плазменной резки металла – продолжительность их работы без перерыва.
  5. Если в вашем доме старая проводка, обязательно проверьте, как «подружится» ваш новый резак с вашей старой сетью.
    Скорее всего, дружбы не выйдет, это нужно принять во внимание.

tutsvarka.ru

Режимы плазменной резки: как правильно настроить

Вопросы, рассмотренные в материале:

  • Почему так важно настраивать режимы плазменной резки
  • Как правильно выбрать режим плазменной резки металла
  • На что влияет ток при настройке режима плазменной резки
  • Что еще нужно учесть при настройке режима плазменной резки
  • Типичные ошибки оператора при выборе режима плазменной резки

Режимы плазменной резки настраиваются в зависимости от толщины и свойств обрабатываемого металла. От правильной настройки зависит не только качество реза, но также расход газа, сохранность металлообрабатывающего оборудования.

Ошибки при выборе режима плазменной резки могут привести к образованию двойной дуги, разрушающей сопло. Рез может быть неравномерным, расширяясь к низу, или выполняться неточно. Есть определенные правила выбора режимов резки, которые помогут избежать типичных ошибок при выполнении данного вида работ.

 

Почему так важно настраивать режимы плазменной резки перед началом работ

Работа начинается с запуска розжига. В момент включения энергетический источник, а таковым может быть инвертор или трансформатор, пускает высокочастотный ток в плазмотрон. Под его воздействием внутри последнего образуется дежурная дуга с температурой от +6 000 до +8 000 °С. Возникает она между наконечником сопла и электродом, поскольку первоначально получить дугу между электродом и поверхностью изделия очень сложно. Дежурная же дуга полностью заполняет собой канал.

После появления дежурной дуги камера начинает заполняться сжатым воздухом. Он проходит по патрубку, попадая на электрическую дугу, нагревается и быстро расширяется, становясь в 50–100 раз больше, чем ранее. Кроме того, ионизируясь, воздух теряет диэлектрические, а приобретает токопроводящие свойства.

Сопло плазмотрона сужается вниз и тем самым формирует струю воздуха, которая на выходе имеет скорость 2-3 м/с и температуру от +25 000 до +30 000 °С. Получившийся горячий ионизированный воздух и представляет собой плазму, электропроводность которой и обрабатываемого материала примерно равны.

Рекомендовано к прочтению

Дежурная дуга гаснет в момент появления режущей (рабочей), которая возникает от соприкосновения плазмы с поверхностью заготовки. Затем происходит локальный нагрев обрабатываемого материала режущей дугой в месте разреза, плавление металла и появление линии реза. Поверхность заготовки покрывается частицами жидкого материала, сдуваемого струей воздуха, поступающей из сопла.

Одним из основных параметров резки плазмой является зазор факела. От расстояния между обрабатываемой заготовкой и соплом зависит несколько факторов:

  • насколько устойчивой и плотной будет дуга;
  • перпендикулярность краев заготовки.

Оптимальным, согласно документам по эксплуатации оборудования, называется расстояние от 1,5 до 10 мм. При следовании рекомендациям края реза должны получаться без дефектов. Последствиями уменьшения зазора будут выгорание сопла и электрода. Именно вследствие этого специалисты рекомендуют использовать модели аппаратов, снабженные специальным датчиком контроля, который помогает удерживать требуемые параметры.

Скорость работы напрямую влияет на качество выполнения работ. Идеальным считается вариант, когда угол между верхним и нижним краем реза на заготовке составляет ≤ 5°.

Обязательно надо помнить следующее:

  • низкая скорость работы способствует излишнему расходу газа, образующего плазму, и созданию шлака, который требуется убирать;
  • превышение скорости приводит к волнистости линии среза, при этом образующийся шлак плохо отделяется.

Как правильно выбрать режим плазменной резки металла

Наиболее эффективной плазменная резка становится при правильном выборе ее технологического режима.

Базовые показатели процесса – качество и скорость работы – для установленной толщины обрабатываемого материала должны определяться:

  • расходом газа, образующего плазму;
  • током дуги;
  • характеристиками применяемого оборудования.

Важное значение имеет создание газовой струи. Влияние на нее оказывает модель плазмотрона, а также установленный режим резки. Ошибка недопустима, поскольку приводит к появлению так называемой «двойной дуги», одна из которых идет по направлению «электрод – сопло», а вторая по направлению «сопло – поверхность заготовки». Ее появление приводит к разрушению и сопла, и электрода, кроме того, изменяется форма заготовки.

Скорость, с которой происходит резка плазмой, оказывает влияние на производительность, качество создаваемого среза, угол краев реза, количество образующегося грата. Если скорость ниже оптимальной, то разрез расширяется книзу, а поверхность становится неровной, к тому же у нижнего края появляется грат. Визуально данный режим резки выглядит как вертикально выходящий за нижний край заготовки факел горящего газа.

Видно, что по мере продвижения материал плавится еще до соприкосновения с дугой. Стабильность работы нарушается и становится возможным появление «двойной дуги». Если же скорость выше оптимально установленной, происходит сужение реза книзу. При этом факел, выходящий вниз, прижат к нижней поверхности заготовки. Кроме того, повышается вероятность того, что прорезывание остановится и появится сдвоенная дуга.

Если же скорость соответствует оптимальной, то ширина нижнего и верхнего края реза практически одинакова и разница минимальна. А выходящий факел имеет угол отклонения от вертикали ≤ 15–20°.

Снижение скорости обработки при сохранении тока и расхода сжатого воздуха способствует возрастанию напряженности дуги.

Качество сделанного реза определяется:

  • углом наклона реза от перпендикуляра;
  • радиусом верхнего края;
  • шероховатостью реза;
  • размерами зоны теплового воздействия.

Для создания реза высокого качества необходимо строгое соблюдение режима обработки.

На что влияет ток при настройке режима плазменной резки

Ток рабочей дуги следует делать минимально необходимым для требуемой производительности работ. Таким образом минимизируется расход используемых сопел, электродов, энергии.

Опытным путем выяснено, что часто возникают ситуации, когда на выбранный оператором ток влияет установленная в организации система оплаты труда. То есть в случае, когда оплата происходит исходя из расхода электродов, сопел и пр., работник стремится к оптимальному использованию режима обработки.

В случае же, когда оплата не привязана к расходу, а зависит от выработки (количества произведенных изделий), работник, увеличивая производительность, тратит больше электродов, сопел, энергии, а также времени, которое расходуется на замену в плазмотроне запасных частей.

Помимо этого, стоит помнить о снижении стойкости электрода при величине тока > 350 А. Частая смена сопел и электродов ведет к уменьшению производительности, а также повышению изнашиваемости держателя в плазмотроне. Поэтому специалисты не советуют увеличивать ток, даже если заготовка имеет большую толщину.

Что еще нужно учесть при настройке режима плазменной резки

Необходимо помнить, что канал сопла имеет высоту, которая определяет, насколько упадет напряжение в плазмотроне. Если холостой ход энергетического источника происходит при низком напряжении, то высокий канал сопла будет способствовать ограничению толщины разрезаемого материала.

Два цикла горения дуги определяют расход сжатого воздуха, поступающего в плазмотрон. Это:

  • создание и горение дежурной дуги;
  • горение основной (режущей) дуги на металл.

В процессе горения дежурной дуги необходимо контролировать расход сжатого воздуха таким образом, чтобы происходило стабильное зажигание пламени и его выдув из сопла. Причина в двух особенностях: большой расход воздуха приводит к уменьшению стабильности зажигания дуги, а малый расход – к невыдуванию факела из сопла.

В ходе горения режущей дуги оптимальный расход сжатого воздуха должен способствовать ее стабилизации внутри сопла, а также быстрому и качественному удалению жидкого материала из разреза. Нельзя забывать, что увеличенный расход газа ведет к уменьшению времени службы катодов в плазмотроне примерно в два, а иногда и в три раза.

При обработке материалов, чья толщина находится в пределах от 8 до 10 см, необходимо обращать повышенное внимание на равномерность прорезания заготовки по всей ее толщине. В качестве превентивной меры рекомендуется делать по краю канавку от 5 до 10 мм глубиной. Получить ее можно двумя способами: снизив скорость обработки, а также вертикально перемещая плазмотрон, расположенный под определенным от торца углом. При дальнейшей работе дуга будет стабилизироваться краями разреза. По завершении работы с канавкой следует начать резку, а затем можно увеличить скорость.

При работе с заготовками толщиной более 10 см необходимо снизить обжатие дуги. Это будет способствовать недопущению обрыва дуги, а также даст возможность пятну анода двигаться по всей глубине реза. Для этого производят следующие действия: в сопле плазматрона на 1-2 мм делают меньше длину канала; в отверстии сопла увеличивают диаметр на 1-2 мм; расходование газа для образования плазмы уменьшают на 20–30 %.

При резке заготовок с толщиной более 1-1,5 см работник должен обращать особое внимание на пробивание дырок для вырезания замкнутого контура. Избежать попадания частиц расплавленного материала на плазмотрон можно с помощью увеличения расстояния между обрабатываемым материалом и соплом в момент перехода дуги на материал. Оборудование, предназначенное для тепловой обработки, предусматривает так называемый «подскок». Как только образуется сквозное отверстие, плазмотрон необходимо опустить.

Аппаратура с механизмом, двигающим плазматрон, может пробивать заготовки толщиной менее 6–8 см. После того как произойдет возбуждение дуги, плазмотрон поднимается на расстояние 1,5–2,5 см от заготовки, а затем, медленно опускаясь, передвигается по линии разреза. Это дает возможность частицам расплавленного материала стекать по появляющейся канавке и не попадать на плазмотрон.

Типичные ошибки оператора при выборе режима плазменной резки

Расходные материалы для резки плазмой выбираются в зависимости от обрабатываемого материала (нержавеющая сталь, обычная сталь, латунь и пр.), толщины заготовки, тока дуги, который выставляется на оборудовании, газов (как защитного, так и образующего плазму) и пр.

У работника (оператора) оборудования имеется специальное руководство, где обозначены расходные материалы, предлагаемые к использованию при различных режимах обработки.

Режимы плазменной резки и настройки отражены в инструкциях по применению, которые необходимо обязательно соблюдать.

Электроды и сопла следует использовать только соответствующие выбранному режиму обработки, в противном случае значительно ухудшается качество резки и увеличивается количество используемых расходников. Важно проводить резку плазмой с использованием того тока дуги, для которого созданы применяемые расходники.

Примером может стать плазменная обработка металла на 100 А резаком, рассчитанным на 40 А. Этого делать не стоит! Наилучшие результаты достигаются, когда значение тока на оборудовании составляет 95 % от номинального, для которого создавалось сопло.

В случае использования режима обработки с излишне низким током дуги рез зашлаковывается, а на обороте заготовки образуется избыток грата. Таким образом, получаемый рез будет иметь низкое качество. При слишком высоком токе, выставленном на аппарате плазменной обработки, время службы сопла уменьшается, причем значительно.

Ежедневной проверки требуют давление газа, образующего плазму, и его расход, а также жидкости, предназначенной для охлаждения. При недостаточном расходе части аппарата плохо охлаждаются, что сокращает время их эксплуатации. Охлаждающая жидкость может поступать в недостаточном количестве по причине износа насоса и фильтров, забитых отходами. Недостаток охлаждения является частой причиной поломок оборудования.

Для качественности реза и поддержки дуги необходимо следить за ровным давлением газа, образующего плазму. При чрезмерном давлении газа затруднен розжиг дуги. Это происходит даже при соблюдении остальных требований к настройке оборудования, процессу обработке и параметрам работы.

Излишне высокое давление газа, образующего плазму, приводит к порче электродов. Очистка газа от примесей перед его применением обязательна. Причина – ускоренный расход материалов и выход из строя самого плазмотрона. Оборудование для подачи воздуха (компрессор) в аппарат часто загрязняется влагой, различными маслами, а также частицами грязи, пыли.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

vt-metall.ru

Плазменный резак – что это такое, устройство, принцип работы, характеристики, что можно резать?

Резка металла на производстве и дома считается сложным процессом, для которого необходимы специальные инструменты и приспособления, одним из них является плазменный резак, который помогает быстро и безопасно выполнить раскрой металлических изделий любой сложности.

Что такое плазменный резак?

Не каждая кислородная горелка справляется с резкой любых типов металла. Некоторые виды стали, например, нержавейку, можно обработать при помощи плазменного резака, это устройство, которое использует возможности плазменно-дуговой резки. Идеальный ровный срез без зазубрин и «наплывов» возможно получить при использовании плазмореза. Благодаря универсальности и отличным характеристикам станки, работающие по принципу плазменной резки, могут легко справиться с самыми капризными материалами:

  • листовым металлом;
  • трубами разного диаметра;
  • чугуном;
  • сталью.

Устройство плазменного резака

Сложное электрическое устройство, которое способно создавать плазму, необходимую для резки металла – плазморез, состоит из определенных узлов. Некоторые модели оснащаются узлом завихрения, который сжимает газовую дугу для ее стабилизации. Основные составляющие аппарата для плазменной резки:

  • система подачи газа и воды;
  • дуговая камера;
  • изолятор;
  • сопло;
  • электродержатель.

Принцип работы плазменного резака

Объяснить за счет чего в аппарате для резки металла образуется плазма, способная разрезать самый прочный металл, непросто. Чтобы понять, как работает плазморез, надо разобраться в его устройстве. При попадании электрического заряда в газ образуется плазма – ионизированный поток воздуха высокой температуры, доходящей до 20000-30000°С. Для охлаждения системы подается вода или специальный газ. После попадания вспомогательного разряда между соплом плазмореза и катодом возникает факел, который режет металл, разрушает твердые камни, наносит разнообразные покрытия.

Плазменный резак – характеристики

Главные технические характеристики устройств для резки металла необходимо знать, чтобы разбираться в видах моделей и понимать, чем они отличаются. Информация о параметрах аппаратов для плазменной резки должна содержать:

  1. Силу тока – основной показатель, влияющий на толщину металла, с которым может работать инструмент, и на скорость работы устройства. Рассчитать необходимую величину силы тока можно самостоятельно, если умножить толщину сплава в миллиметрах на 4, например, для плазменной резки листа металла толщиной 20 мм нужен резак мощностью 80 А.
  2. Продолжительность включения измеряется в %, для примера можно сказать, что работа плазменного резака с характеристиками ПВ 60% должна составлять 6 мин., а следующие 4 мин. агрегат должен отдыхать. Профессиональные модели плазморезов имеют ПВ от 80%, домашние недорогие устройства – около 50%.
  3. Тип питания агрегата бывает различным. В продаже имеются модели станков, которым требуется двух- или трехфазная сеть, 380 В требуется профессиональным трехфазным моделям. Обычные, работающие на параметрах домашних 220 В, приборы более удобны в использовании.

Что можно резать плазморезом?

В различных сферах производства специалисты по достоинству оценили характеристики ручного плазмореза, которым можно осуществлять разные работы: быстро и качественно раскроить большой объем металлических изделий, изготовить любые сложные геометрические формы с максимальным соответствием исходным чертежам. Современная и эффективная плазменная резка способна работать не только с металлами, но и с материалами, которые не проводят электрический ток:

  • камнем;
  • деревом;
  • пластиком.

Плюсы и минусы плазмореза

Выбирая приспособление для эффективной работы с металлом, домашним мастерам предстоит сделать нелегкий выбор и решить, чему отдать предпочтение – плазменному резаку по металлу или обычной газовой горелке. Неоспоримые преимущества, которыми обладает плазменный резак, известны:

  • высокая производительность и мощность;
  • качественная обработка материала;
  • универсальность;
  • безопасность;
  • экологичность.

Недостатком плазморезов считаются:

  • высокая стоимость агрегата;
  • ограничение толщины материала;
  • невозможность работать двумя станками одновременно.

Виды плазменных резаков

Огромный ассортимент моделей резаков представлен в профессиональных магазинах электротоваров. Отличаются ручные плазменные резаки друг от друга многими параметрами. Какой тип агрегата выбрать – переносной или стационарный, программируемый или ручной – зависит от конкретных потребностей владельца. Разделяются плазменные резаки на следующие виды:

  • по типу энергопотребления – на трансформаторные и инверторные модели;
  • по виду контакта – на бесконтактные и контактные;
  • по типу работы – на ручные и с ЧПУ.

Газ для плазмореза

Плазмообразующие газы – отдельный ряд среди химических элементов. В аппарате плазменной резки металла применяются различные газы и их смеси, от которых зависит качество работы. Физические свойства газов – атомная масса, теплопроводность, химическая активность влияют на показатели работы плазморезов. Смешивание газов – процесс непростой, и зависит от толщины металла, типа стали и других параметров. Хорошо зарекомендовали себя в работе смеси аргона и азота с водородом. Смесь азота и кислорода применяется для многих видов металла и считается самым экономичным вариантом.

Как выбрать плазменный резак?

Оптимизация рабочего процесса на производстве и дома – важное условие качественного результата. Выбирать машину для плазменной резки следует обдуманно. Чтобы не ошибиться с покупкой, специалисты рекомендуют ответить на несколько вопросов.

  1. С каким металлом предстоит работать? Для медных, латунных, алюминиевых, сплавов идеально подойдет плазморез с мощностью 6 А. Для работы с черными металлами и нержавейкой хватит мощности 4А.
  2. В каких условиях будет работать устройство? Для продолжительной работы лучше выбирать резаки с внешней компрессорной подачей воздуха. Для небольших мастерских подойдет плазморез с внутренним компрессором.
  3. Как часто планируется менять расходные материалы? Следует учитывать, что электроды и сопло – детали, которые нуждаются в периодической замене, и частота их изнашивания зависит от длительности и мощности работы резака. Выбирая плазморез необходимо убедиться, что расходные материалы имеются в магазине в наличии или под заказ.

Рейтинг плазменных резаков

Простота использования, компактность, универсальность – основные параметры, за которые профессионалы любят работать с плазменными резаками. ТОП-3 лучших моделей выглядит следующим образом.

  1. Переносной плазменный резак «Ресанта» инверторного типа работает быстро, точно и качественно. Сила тока регулируется плавно, существует система автоподжига дуги. Работает устройство от сети 220 В, необходим источник сжатого воздуха. Удобная ручка позволяет легко переносить плазморез, вентиляционные отверстия в корпусе помогают системе не перегреться, понятные индикаторы делают управление легким.
  2. «Сварог CUT 100» – плазменный резак последнего поколения, который хорошо зарекомендовал себя на рынке. Способность разрезать металл толщиной до 35-ти мм, защита от перегрева, безопасность сделали данную модель востребованной среди покупателей. Сжатый воздух и трехфазная сеть 380 В необходимы для работы устройства. Недостатком называют высокую стоимость аппарата.
  3. «Aurora Pro airforce 100» – агрегат необходимый там, где осуществляется плазменная обработка материалов. Мобильность, высокое качество работы, встроенные транзисторы улучшенного качества, многоступенчатая защита – бесспорные плюсы устройства.

Как пользоваться плазморезом?

Плазменная резка – процесс несложный. Соблюдение простых правил необходимо для получения качественного результата. Во время работы плазморезом следует соблюдать пошаговую инструкцию:

  1. Перед началом работы необходимо защитить себя, надев специальную одежду и очки. Помещение должно быть оснащено вытяжкой, на лицо можно надеть маску.
  2. Чтобы избежать травм, до работы следует проверить все электрические шнуры на отсутствие повреждений, убедиться в соответствии тока с необходимыми параметрами резака.
  3. Плазморез нужно подключить к сети и источнику сжатого воздуха.
  4. Заготовка должна быть очищена от грязи, краски и других покрытий.
  5. В зависимости от толщины материала подобрать оптимальную силу тока и скорость резания.
  6. Резак продуть газом, через 30-40 сек. выполнить розжиг пилотной, а после нее – рабочей дуги.
  7. Держа сопло под углом 90° к заготовке, аккуратно провести по намеченной траектории.
  8. Работать необходимо, соблюдая режим ПВ – продолжительности включения.
  9. После работы отключить аппарат в обратной последовательности.

Плазменный резак своими руками

Если денег на качественный станок для резки металла нет, можно сделать плазморез своими руками, имея несколько необходимых составляющих, самый главный – это источник питания, обладающий необходимыми характеристиками. Для этих целей отлично подходит сварочный инверторный аппарат. Компрессор средней мощности для подачи воздуха стоит купить в магазине. Другие важные составляющие плазменного резака можно изготовить из подручных материалов:

  1. Для горелки нужна ручка от мощного паяльника. Через отверстие в середине будет подводиться сжатый воздух и ток.
  2. Кнопку пуска лучше сделать крупной.
  3. Электроды из гафния и набор сопл следует купить в магазине.
  4. Сборка плазмотрона проста: за ручкой размещается металлическая трубка, внутри нее – катод, покрытый изоляцией, следом на резьбе располагается сопло.
  5. К самодельному плазмотрону подключается компрессор и источник питания.
  6. Работать с самодельным устройством следует аккуратно, соблюдая технику безопасности и не допуская перегревания.

 

womanadvice.ru

Плазморезы рейтинг - топ 10

Фото Наименование Толщина реза Напряжение
Aurora PRO AIRHOLD 42 89 Современный плазменный инвертор Aurora PRO AIRHOLD 42 применяется для производительной качественной сварки (резки) металлических изделий из мягких сталей, конструкционных, цветных металлов и различных сплавов. Данный тип аппарата позволяет раскраивать заготовки толщиной более 12 мм с высокой скоростью благодаря максимальному току 40А.

Современный плазменный инвертор Aurora PRO AIRHOLD 42 применяется для производительной качественной сварки (резки) металлических изделий из мягких сталей, конструкционных, цветных металлов и различных сплавов. Данный тип аппарата позволяет раскраивать заготовки толщиной более 12 мм с высокой скоростью благодаря максимальному току 40А.

Читать полностью

Добавить к сравнению

12 мм 220 В
Triton CUT 100 PN CNC 89 Многофункциональный мощный инвертор для плазменно­-воздушной резки TRITON CUT 100 PN CNC построен на современных IGBT модулях компании SIEMENS по технологии Soft Switch, а также оснащен встроенными выходами на делитель напряжения.

Многофункциональный мощный инвертор для плазменно­-воздушной резки TRITON CUT 100 PN CNC построен на современных IGBT модулях компании SIEMENS по технологии Soft Switch, а также оснащен встроенными выходами на делитель напряжения.

Читать полностью

Добавить к сравнению

50 мм 380 В
Сварог PRO CUT 45 (L202) 89 Аппарат для воздушно-плазменной резки PRO CUT 45 (L202) – малогабаритная профессиональная модель, которая оснащена фильтром-регулятором воздуха, имеет высокочастотный поджиг дуги и собрана на современной элементной базе из IGBT модулей.

Аппарат для воздушно-плазменной резки PRO CUT 45 (L202) – малогабаритная профессиональная модель, которая оснащена фильтром-регулятором воздуха, имеет высокочастотный поджиг дуги и собрана на современной элементной базе из IGBT модулей.

Читать полностью

Добавить к сравнению

12 мм 220 В
Сварог REAL CUT 45 (L207) 89 Бюджетный и практичный аппарат от компании Сварог, REAL CUT 45 (L207), предназначен для качественной и быстрой плазменной резки металлов .  Сочетает в себе высокий уровень надежности и отличное качество кромок после раскроя.

Бюджетный и практичный аппарат от компании Сварог, REAL CUT 45 (L207), предназначен для качественной и быстрой плазменной резки металлов .  Сочетает в себе высокий уровень надежности и отличное качество кромок после раскроя.

Читать полностью

Добавить к сравнению

12 мм 220 В
Aurora PRO AIRFORCE 60 89 Профессиональный аппарат серии Aurora PRO AIRFORCE 60 применяется для резки стали, черных и цветных металлов толщиной до 20 мм и более. Работа устройства основана на инверторной технологии с применением MOSFET/IGBT-модулей

Профессиональный аппарат серии Aurora PRO AIRFORCE 60 применяется для резки стали, черных и цветных металлов толщиной до 20 мм и более. Работа устройства основана на инверторной технологии с применением MOSFET/IGBT-модулей

Читать полностью

Добавить к сравнению

20 мм 380 В
Aurora PRO AIRFORCE 100 89 Инвертор для воздушно-плазменной резки AURORA PRO AIRFORCE 100 является одним из самых мощных в линейке. Современная инверторная схема управления на IGBT-транзисторах, бесконтактный розжиг дуги, максимальный ток 100 Ампер позволяют максимально быстро и качественно раскраивать металлические заготовки и изделия толщиной до 40 миллиметров.

Инвертор для воздушно-плазменной резки AURORA PRO AIRFORCE 100 является одним из самых мощных в линейке. Современная инверторная схема управления на IGBT-транзисторах, бесконтактный розжиг дуги, максимальный ток 100 Ампер позволяют максимально быстро и качественно раскраивать металлические заготовки и изделия толщиной до 40 миллиметров.

Читать полностью

Добавить к сравнению

40 мм 380 В
Сварог CUT 100 (J78) 89 Мощный и надежный инвертор CUT 100 (J78) для воздушно-плазменной резки построен на современных IGBT транзисторах (SIEMENS). Благодаря широкому диапазону рабочего тока 20–100 А и высокому давлению поступающего воздуха от 0,6 МПа аппарат позволяет раскраивать металлические изделия толщиной до 35 мм.

Мощный и надежный инвертор CUT 100 (J78) для воздушно-плазменной резки построен на современных IGBT транзисторах (SIEMENS). Благодаря широкому диапазону рабочего тока 20–100 А и высокому давлению поступающего воздуха от 0,6 МПа аппарат позволяет раскраивать металлические изделия толщиной до 35 мм.

Читать полностью

Добавить к сравнению

35 мм 380 В
Grovers CUT 60 89 Новая плазменная установка GROVERS CUT 60 станет незаменимым инструментом на вашем производстве для любых задач по демонтажу металлоконструкций из углеродистых сталей, нержавеющих сталей, алюминия и др. металлов!

Новая плазменная установка GROVERS CUT 60 станет незаменимым инструментом на вашем производстве для любых задач по демонтажу металлоконструкций из углеродистых сталей, нержавеющих сталей, алюминия и др. металлов!

Читать полностью

Добавить к сравнению

15 мм 220 В
Fubag PLASMA 40 AIR 89 FUBAG предлагает универсальное решение в области плазменной резки - надежный аппарат для плазменной резки со встроенным компрессором.

FUBAG предлагает универсальное решение в области плазменной резки - надежный аппарат для плазменной резки со встроенным компрессором.

Читать полностью

Добавить к сравнению

14 мм 220 В
FoxWeld Plasma 43 Multi 89 Универсальный сварочный аппарат, который помимо воздушно-плазменной резки, обеспечивает качественную аргонодуговую и ручную дуговую сварку. Оснащен всеми функциями, способными обеспечить качественную работу. Можно использовать электроды диаметром до 4 миллиметров.

Универсальный сварочный аппарат, который помимо воздушно-плазменной резки, обеспечивает качественную аргонодуговую и ручную дуговую сварку. Оснащен всеми функциями, способными обеспечить качественную работу. Можно использовать электроды диаметром до 4 миллиметров.

Читать полностью

Добавить к сравнению

11 мм 220 В

www.welding-russia.ru


Смотрите также